backup wip
This commit is contained in:
@@ -1,8 +1,10 @@
|
||||
"""
|
||||
TODO(alexander-soare):
|
||||
- Remove reliance on Robomimic for SpatialSoftmax.
|
||||
- Remove reliance on diffusers for DDPMScheduler.
|
||||
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
|
||||
- Move EMA out of policy.
|
||||
- Consolidate _DiffusionUnetImagePolicy into DiffusionPolicy.
|
||||
- One more pass on comments and documentation.
|
||||
"""
|
||||
|
||||
import copy
|
||||
@@ -10,10 +12,10 @@ import logging
|
||||
import math
|
||||
import time
|
||||
from collections import deque
|
||||
from itertools import chain
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import hydra
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision
|
||||
@@ -23,12 +25,12 @@ from robomimic.models.base_nets import SpatialSoftmax
|
||||
from torch import Tensor, nn
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.utils import (
|
||||
get_device_from_parameters,
|
||||
get_dtype_from_parameters,
|
||||
populate_queues,
|
||||
)
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -41,69 +43,29 @@ class DiffusionPolicy(nn.Module):
|
||||
|
||||
name = "diffusion"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg,
|
||||
cfg_device,
|
||||
cfg_noise_scheduler,
|
||||
cfg_optimizer,
|
||||
cfg_ema,
|
||||
shape_meta: dict,
|
||||
horizon,
|
||||
n_action_steps,
|
||||
n_obs_steps,
|
||||
num_inference_steps=None,
|
||||
diffusion_step_embed_dim=256,
|
||||
down_dims=(256, 512, 1024),
|
||||
kernel_size=5,
|
||||
n_groups=8,
|
||||
film_scale_modulation=True,
|
||||
**_,
|
||||
):
|
||||
def __init__(self, cfg: DiffusionConfig, lr_scheduler_num_training_steps: int):
|
||||
super().__init__()
|
||||
self.cfg = cfg
|
||||
self.n_obs_steps = n_obs_steps
|
||||
self.n_action_steps = n_action_steps
|
||||
|
||||
# queues are populated during rollout of the policy, they contain the n latest observations and actions
|
||||
self._queues = None
|
||||
|
||||
noise_scheduler = hydra.utils.instantiate(cfg_noise_scheduler)
|
||||
|
||||
self.diffusion = _DiffusionUnetImagePolicy(
|
||||
cfg,
|
||||
shape_meta=shape_meta,
|
||||
noise_scheduler=noise_scheduler,
|
||||
horizon=horizon,
|
||||
n_action_steps=n_action_steps,
|
||||
n_obs_steps=n_obs_steps,
|
||||
num_inference_steps=num_inference_steps,
|
||||
diffusion_step_embed_dim=diffusion_step_embed_dim,
|
||||
down_dims=down_dims,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
)
|
||||
|
||||
self.device = get_safe_torch_device(cfg_device)
|
||||
self.diffusion.to(self.device)
|
||||
self.diffusion = _DiffusionUnetImagePolicy(cfg)
|
||||
|
||||
# TODO(alexander-soare): This should probably be managed outside of the policy class.
|
||||
self.ema_diffusion = None
|
||||
self.ema = None
|
||||
if self.cfg.use_ema:
|
||||
self.ema_diffusion = copy.deepcopy(self.diffusion)
|
||||
self.ema = hydra.utils.instantiate(
|
||||
cfg_ema,
|
||||
model=self.ema_diffusion,
|
||||
)
|
||||
self.ema = _EMA(cfg, model=self.ema_diffusion)
|
||||
|
||||
self.optimizer = hydra.utils.instantiate(
|
||||
cfg_optimizer,
|
||||
params=self.diffusion.parameters(),
|
||||
# TODO(alexander-soare): Move optimizer out of policy.
|
||||
self.optimizer = torch.optim.Adam(
|
||||
self.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
|
||||
)
|
||||
|
||||
# TODO(rcadene): modify lr scheduler so that it doesnt depend on epochs but steps
|
||||
# TODO(alexander-soare): Move LR scheduler out of policy.
|
||||
# TODO(rcadene): modify lr scheduler so that it doesn't depend on epochs but steps
|
||||
self.global_step = 0
|
||||
|
||||
# configure lr scheduler
|
||||
@@ -111,7 +73,7 @@ class DiffusionPolicy(nn.Module):
|
||||
cfg.lr_scheduler,
|
||||
optimizer=self.optimizer,
|
||||
num_warmup_steps=cfg.lr_warmup_steps,
|
||||
num_training_steps=cfg.offline_steps,
|
||||
num_training_steps=lr_scheduler_num_training_steps,
|
||||
# pytorch assumes stepping LRScheduler every epoch
|
||||
# however huggingface diffusers steps it every batch
|
||||
last_epoch=self.global_step - 1,
|
||||
@@ -122,9 +84,9 @@ class DiffusionPolicy(nn.Module):
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
"""
|
||||
self._queues = {
|
||||
"observation.image": deque(maxlen=self.n_obs_steps),
|
||||
"observation.state": deque(maxlen=self.n_obs_steps),
|
||||
"action": deque(maxlen=self.n_action_steps),
|
||||
"observation.image": deque(maxlen=self.cfg.n_obs_steps),
|
||||
"observation.state": deque(maxlen=self.cfg.n_obs_steps),
|
||||
"action": deque(maxlen=self.cfg.n_action_steps),
|
||||
}
|
||||
|
||||
@torch.no_grad
|
||||
@@ -138,11 +100,13 @@ class DiffusionPolicy(nn.Module):
|
||||
- The diffusion model generates `horizon` steps worth of actions.
|
||||
- `n_action_steps` worth of actions are actually kept for execution, starting from the current step.
|
||||
Schematically this looks like:
|
||||
----------------------------------------------------------------------------------------------
|
||||
(legend: o = n_obs_steps, h = horizon, a = n_action_steps)
|
||||
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... |n-o+1+h|
|
||||
|observation is used | YES | YES | ..... | NO | NO | NO | NO | NO | NO |
|
||||
|observation is used | YES | YES | YES | NO | NO | NO | NO | NO | NO |
|
||||
|action is generated | YES | YES | YES | YES | YES | YES | YES | YES | YES |
|
||||
|action is used | NO | NO | NO | YES | YES | YES | NO | NO | NO |
|
||||
----------------------------------------------------------------------------------------------
|
||||
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
|
||||
"horizon" may not the best name to describe what the variable actually means, because this period is
|
||||
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
|
||||
@@ -213,57 +177,41 @@ class DiffusionPolicy(nn.Module):
|
||||
|
||||
|
||||
class _DiffusionUnetImagePolicy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
cfg,
|
||||
shape_meta: dict,
|
||||
noise_scheduler: DDPMScheduler,
|
||||
horizon,
|
||||
n_action_steps,
|
||||
n_obs_steps,
|
||||
num_inference_steps=None,
|
||||
diffusion_step_embed_dim=256,
|
||||
down_dims=(256, 512, 1024),
|
||||
kernel_size=5,
|
||||
n_groups=8,
|
||||
film_scale_modulation=True,
|
||||
):
|
||||
def __init__(self, cfg: DiffusionConfig):
|
||||
super().__init__()
|
||||
action_shape = shape_meta["action"]["shape"]
|
||||
assert len(action_shape) == 1
|
||||
action_dim = action_shape[0]
|
||||
|
||||
self.rgb_encoder = _RgbEncoder(input_shape=shape_meta.obs.image.shape, **cfg.rgb_encoder)
|
||||
self.cfg = cfg
|
||||
|
||||
self.rgb_encoder = _RgbEncoder(cfg)
|
||||
self.unet = _ConditionalUnet1D(
|
||||
input_dim=action_dim,
|
||||
global_cond_dim=(action_dim + self.rgb_encoder.feature_dim) * n_obs_steps,
|
||||
diffusion_step_embed_dim=diffusion_step_embed_dim,
|
||||
down_dims=down_dims,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
cfg, global_cond_dim=(cfg.action_dim + self.rgb_encoder.feature_dim) * cfg.n_obs_steps
|
||||
)
|
||||
|
||||
self.noise_scheduler = noise_scheduler
|
||||
self.horizon = horizon
|
||||
self.action_dim = action_dim
|
||||
self.n_action_steps = n_action_steps
|
||||
self.n_obs_steps = n_obs_steps
|
||||
self.noise_scheduler = DDPMScheduler(
|
||||
num_train_timesteps=cfg.num_train_timesteps,
|
||||
beta_start=cfg.beta_start,
|
||||
beta_end=cfg.beta_end,
|
||||
beta_schedule=cfg.beta_schedule,
|
||||
variance_type="fixed_small",
|
||||
clip_sample=cfg.clip_sample,
|
||||
clip_sample_range=cfg.clip_sample_range,
|
||||
prediction_type=cfg.prediction_type,
|
||||
)
|
||||
|
||||
if num_inference_steps is None:
|
||||
num_inference_steps = noise_scheduler.config.num_train_timesteps
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
if cfg.num_inference_steps is None:
|
||||
self.num_inference_steps = self.noise_scheduler.config.num_train_timesteps
|
||||
else:
|
||||
self.num_inference_steps = cfg.num_inference_steps
|
||||
|
||||
# ========= inference ============
|
||||
def conditional_sample(self, batch_size, global_cond=None, generator=None):
|
||||
def conditional_sample(
|
||||
self, batch_size: int, global_cond: Tensor | None = None, generator: torch.Generator | None = None
|
||||
) -> Tensor:
|
||||
device = get_device_from_parameters(self)
|
||||
dtype = get_dtype_from_parameters(self)
|
||||
|
||||
# Sample prior.
|
||||
sample = torch.randn(
|
||||
size=(batch_size, self.horizon, self.action_dim),
|
||||
size=(batch_size, self.cfg.horizon, self.cfg.action_dim),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
generator=generator,
|
||||
@@ -283,7 +231,7 @@ class _DiffusionUnetImagePolicy(nn.Module):
|
||||
|
||||
return sample
|
||||
|
||||
def generate_actions(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""
|
||||
This function expects `batch` to have (at least):
|
||||
{
|
||||
@@ -293,8 +241,7 @@ class _DiffusionUnetImagePolicy(nn.Module):
|
||||
"""
|
||||
assert set(batch).issuperset({"observation.state", "observation.image"})
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
assert n_obs_steps == self.n_obs_steps
|
||||
assert self.n_obs_steps == n_obs_steps
|
||||
assert n_obs_steps == self.cfg.n_obs_steps
|
||||
|
||||
# Extract image feature (first combine batch and sequence dims).
|
||||
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
|
||||
@@ -307,13 +254,13 @@ class _DiffusionUnetImagePolicy(nn.Module):
|
||||
sample = self.conditional_sample(batch_size, global_cond=global_cond)
|
||||
|
||||
# `horizon` steps worth of actions (from the first observation).
|
||||
action = sample[..., : self.action_dim]
|
||||
actions = sample[..., : self.cfg.action_dim]
|
||||
# Extract `n_action_steps` steps worth of actions (from the current observation).
|
||||
start = n_obs_steps - 1
|
||||
end = start + self.n_action_steps
|
||||
action = action[:, start:end]
|
||||
end = start + self.cfg.n_action_steps
|
||||
actions = actions[:, start:end]
|
||||
|
||||
return action
|
||||
return actions
|
||||
|
||||
def compute_loss(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""
|
||||
@@ -329,9 +276,8 @@ class _DiffusionUnetImagePolicy(nn.Module):
|
||||
assert set(batch).issuperset({"observation.state", "observation.image", "action", "action_is_pad"})
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
horizon = batch["action"].shape[1]
|
||||
assert horizon == self.horizon
|
||||
assert n_obs_steps == self.n_obs_steps
|
||||
assert self.n_obs_steps == n_obs_steps
|
||||
assert horizon == self.cfg.horizon
|
||||
assert n_obs_steps == self.cfg.n_obs_steps
|
||||
|
||||
# Extract image feature (first combine batch and sequence dims).
|
||||
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
|
||||
@@ -359,14 +305,13 @@ class _DiffusionUnetImagePolicy(nn.Module):
|
||||
pred = self.unet(noisy_trajectory, timesteps, global_cond=global_cond)
|
||||
|
||||
# Compute the loss.
|
||||
# The targe is either the original trajectory, or the noise.
|
||||
pred_type = self.noise_scheduler.config.prediction_type
|
||||
if pred_type == "epsilon":
|
||||
# The target is either the original trajectory, or the noise.
|
||||
if self.cfg.prediction_type == "epsilon":
|
||||
target = eps
|
||||
elif pred_type == "sample":
|
||||
elif self.cfg.prediction_type == "sample":
|
||||
target = batch["action"]
|
||||
else:
|
||||
raise ValueError(f"Unsupported prediction type {pred_type}")
|
||||
raise ValueError(f"Unsupported prediction type {self.cfg.prediction_type}")
|
||||
|
||||
loss = F.mse_loss(pred, target, reduction="none")
|
||||
|
||||
@@ -384,64 +329,35 @@ class _RgbEncoder(nn.Module):
|
||||
Includes the ability to normalize and crop the image first.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_shape: tuple[int, int, int],
|
||||
norm_mean_std: tuple[float, float] = [1.0, 1.0],
|
||||
crop_shape: tuple[int, int] | None = None,
|
||||
random_crop: bool = False,
|
||||
backbone_name: str = "resnet18",
|
||||
pretrained_backbone: bool = False,
|
||||
use_group_norm: bool = False,
|
||||
num_keypoints: int = 32,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
input_shape: channel-first input shape (C, H, W)
|
||||
norm_mean_std: mean and standard deviation used for image normalization. Images are normalized as
|
||||
(image - mean) / std.
|
||||
crop_shape: (H, W) shape to crop to (must fit within the input shape). If not provided, no
|
||||
cropping is done.
|
||||
random_crop: Whether the crop should be random at training time (it's always a center crop in
|
||||
eval mode).
|
||||
backbone_name: The name of one of the available resnet models from torchvision (eg resnet18).
|
||||
pretrained_backbone: whether to use timm pretrained weights.
|
||||
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
||||
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
||||
num_keypoints: Number of keypoints for SpatialSoftmax (default value of 32 matches PushT Image).
|
||||
"""
|
||||
def __init__(self, cfg: DiffusionConfig):
|
||||
super().__init__()
|
||||
if input_shape[0] != 3:
|
||||
raise ValueError("Only RGB images are handled")
|
||||
if not backbone_name.startswith("resnet"):
|
||||
raise ValueError(
|
||||
"Only resnet is supported for now (because of the assumption that 'layer4' is the output layer)"
|
||||
)
|
||||
|
||||
# Set up optional preprocessing.
|
||||
if norm_mean_std == [1.0, 1.0]:
|
||||
if all(v == 1.0 for v in chain(cfg.image_normalization_mean, cfg.image_normalization_std)):
|
||||
self.normalizer = nn.Identity()
|
||||
else:
|
||||
self.normalizer = torchvision.transforms.Normalize(mean=norm_mean_std[0], std=norm_mean_std[1])
|
||||
|
||||
if crop_shape is not None:
|
||||
self.normalizer = torchvision.transforms.Normalize(
|
||||
mean=cfg.image_normalization_mean, std=cfg.image_normalization_std
|
||||
)
|
||||
if cfg.crop_shape is not None:
|
||||
self.do_crop = True
|
||||
# Always use center crop for eval
|
||||
self.center_crop = torchvision.transforms.CenterCrop(crop_shape)
|
||||
if random_crop:
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(crop_shape)
|
||||
self.center_crop = torchvision.transforms.CenterCrop(cfg.crop_shape)
|
||||
if cfg.crop_is_random:
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(cfg.crop_shape)
|
||||
else:
|
||||
self.maybe_random_crop = self.center_crop
|
||||
else:
|
||||
self.do_crop = False
|
||||
|
||||
# Set up backbone.
|
||||
backbone_model = getattr(torchvision.models, backbone_name)(pretrained=pretrained_backbone)
|
||||
backbone_model = getattr(torchvision.models, cfg.vision_backbone)(
|
||||
pretrained=cfg.use_pretrained_backbone
|
||||
)
|
||||
# Note: This assumes that the layer4 feature map is children()[-3]
|
||||
# TODO(alexander-soare): Use a safer alternative.
|
||||
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
|
||||
if use_group_norm:
|
||||
if pretrained_backbone:
|
||||
if cfg.use_group_norm:
|
||||
if cfg.use_pretrained_backbone:
|
||||
raise ValueError(
|
||||
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
|
||||
)
|
||||
@@ -454,10 +370,10 @@ class _RgbEncoder(nn.Module):
|
||||
# Set up pooling and final layers.
|
||||
# Use a dry run to get the feature map shape.
|
||||
with torch.inference_mode():
|
||||
feat_map_shape = tuple(self.backbone(torch.zeros(size=(1, *input_shape))).shape[1:])
|
||||
self.pool = SpatialSoftmax(feat_map_shape, num_kp=num_keypoints)
|
||||
self.feature_dim = num_keypoints * 2
|
||||
self.out = nn.Linear(num_keypoints * 2, self.feature_dim)
|
||||
feat_map_shape = tuple(self.backbone(torch.zeros(size=(1, 3, *cfg.image_size))).shape[1:])
|
||||
self.pool = SpatialSoftmax(feat_map_shape, num_kp=cfg.spatial_softmax_num_keypoints)
|
||||
self.feature_dim = cfg.spatial_softmax_num_keypoints * 2
|
||||
self.out = nn.Linear(cfg.spatial_softmax_num_keypoints * 2, self.feature_dim)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
@@ -516,16 +432,18 @@ def _replace_submodules(
|
||||
|
||||
|
||||
class _SinusoidalPosEmb(nn.Module):
|
||||
def __init__(self, dim):
|
||||
"""1D sinusoidal positional embeddings as in Attention is All You Need."""
|
||||
|
||||
def __init__(self, dim: int):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
device = x.device
|
||||
half_dim = self.dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
||||
emb = x[:, None] * emb[None, :]
|
||||
emb = x.unsqueeze(-1) * emb.unsqueeze(0)
|
||||
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
||||
return emb
|
||||
|
||||
@@ -549,92 +467,46 @@ class _Conv1dBlock(nn.Module):
|
||||
class _ConditionalUnet1D(nn.Module):
|
||||
"""A 1D convolutional UNet with FiLM modulation for conditioning.
|
||||
|
||||
Two types of conditioning can be applied:
|
||||
- Global: Conditioning information that is aggregated over the whole observation window. This is
|
||||
incorporated via the FiLM technique in the residual convolution blocks of the Unet's encoder/decoder.
|
||||
- Local: Conditioning information for each timestep in the observation window. This is incorporated
|
||||
by encoding the information via 1D convolutions and adding the resulting embeddings to the inputs and
|
||||
outputs of the Unet's encoder/decoder.
|
||||
Note: this removes local conditioning as compared to the original diffusion policy code.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
local_cond_dim: int | None = None,
|
||||
global_cond_dim: int | None = None,
|
||||
diffusion_step_embed_dim: int = 256,
|
||||
down_dims: int | None = None,
|
||||
kernel_size: int = 3,
|
||||
n_groups: int = 8,
|
||||
film_scale_modulation: bool = False,
|
||||
):
|
||||
def __init__(self, cfg: DiffusionConfig, global_cond_dim: int):
|
||||
super().__init__()
|
||||
|
||||
if down_dims is None:
|
||||
down_dims = [256, 512, 1024]
|
||||
self.cfg = cfg
|
||||
|
||||
# Encoder for the diffusion timestep.
|
||||
self.diffusion_step_encoder = nn.Sequential(
|
||||
_SinusoidalPosEmb(diffusion_step_embed_dim),
|
||||
nn.Linear(diffusion_step_embed_dim, diffusion_step_embed_dim * 4),
|
||||
_SinusoidalPosEmb(cfg.diffusion_step_embed_dim),
|
||||
nn.Linear(cfg.diffusion_step_embed_dim, cfg.diffusion_step_embed_dim * 4),
|
||||
nn.Mish(),
|
||||
nn.Linear(diffusion_step_embed_dim * 4, diffusion_step_embed_dim),
|
||||
nn.Linear(cfg.diffusion_step_embed_dim * 4, cfg.diffusion_step_embed_dim),
|
||||
)
|
||||
|
||||
# The FiLM conditioning dimension.
|
||||
cond_dim = diffusion_step_embed_dim
|
||||
if global_cond_dim is not None:
|
||||
cond_dim += global_cond_dim
|
||||
|
||||
self.local_cond_down_encoder = None
|
||||
self.local_cond_up_encoder = None
|
||||
if local_cond_dim is not None:
|
||||
# Encoder for the local conditioning. The output gets added to the Unet encoder input.
|
||||
self.local_cond_down_encoder = _ConditionalResidualBlock1D(
|
||||
local_cond_dim,
|
||||
down_dims[0],
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
)
|
||||
# Encoder for the local conditioning. The output gets added to the Unet encoder output.
|
||||
self.local_cond_up_encoder = _ConditionalResidualBlock1D(
|
||||
local_cond_dim,
|
||||
down_dims[0],
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
)
|
||||
cond_dim = cfg.diffusion_step_embed_dim + global_cond_dim
|
||||
|
||||
# In channels / out channels for each downsampling block in the Unet's encoder. For the decoder, we
|
||||
# just reverse these.
|
||||
in_out = [(input_dim, down_dims[0])] + list(zip(down_dims[:-1], down_dims[1:], strict=True))
|
||||
in_out = [(cfg.action_dim, cfg.down_dims[0])] + list(
|
||||
zip(cfg.down_dims[:-1], cfg.down_dims[1:], strict=True)
|
||||
)
|
||||
|
||||
# Unet encoder.
|
||||
common_res_block_kwargs = {
|
||||
"cond_dim": cond_dim,
|
||||
"kernel_size": cfg.kernel_size,
|
||||
"n_groups": cfg.n_groups,
|
||||
"use_film_scale_modulation": cfg.use_film_scale_modulation,
|
||||
}
|
||||
self.down_modules = nn.ModuleList([])
|
||||
for ind, (dim_in, dim_out) in enumerate(in_out):
|
||||
is_last = ind >= (len(in_out) - 1)
|
||||
self.down_modules.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
_ConditionalResidualBlock1D(
|
||||
dim_in,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
_ConditionalResidualBlock1D(
|
||||
dim_out,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
_ConditionalResidualBlock1D(dim_in, dim_out, **common_res_block_kwargs),
|
||||
_ConditionalResidualBlock1D(dim_out, dim_out, **common_res_block_kwargs),
|
||||
# Downsample as long as it is not the last block.
|
||||
nn.Conv1d(dim_out, dim_out, 3, 2, 1) if not is_last else nn.Identity(),
|
||||
]
|
||||
@@ -644,22 +516,8 @@ class _ConditionalUnet1D(nn.Module):
|
||||
# Processing in the middle of the auto-encoder.
|
||||
self.mid_modules = nn.ModuleList(
|
||||
[
|
||||
_ConditionalResidualBlock1D(
|
||||
down_dims[-1],
|
||||
down_dims[-1],
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
_ConditionalResidualBlock1D(
|
||||
down_dims[-1],
|
||||
down_dims[-1],
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
_ConditionalResidualBlock1D(cfg.down_dims[-1], cfg.down_dims[-1], **common_res_block_kwargs),
|
||||
_ConditionalResidualBlock1D(cfg.down_dims[-1], cfg.down_dims[-1], **common_res_block_kwargs),
|
||||
]
|
||||
)
|
||||
|
||||
@@ -670,22 +528,9 @@ class _ConditionalUnet1D(nn.Module):
|
||||
self.up_modules.append(
|
||||
nn.ModuleList(
|
||||
[
|
||||
_ConditionalResidualBlock1D(
|
||||
dim_in * 2, # x2 as it takes the encoder's skip connection as well
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
_ConditionalResidualBlock1D(
|
||||
dim_out,
|
||||
dim_out,
|
||||
cond_dim=cond_dim,
|
||||
kernel_size=kernel_size,
|
||||
n_groups=n_groups,
|
||||
film_scale_modulation=film_scale_modulation,
|
||||
),
|
||||
# dim_in * 2, because it takes the encoder's skip connection as well
|
||||
_ConditionalResidualBlock1D(dim_in * 2, dim_out, **common_res_block_kwargs),
|
||||
_ConditionalResidualBlock1D(dim_out, dim_out, **common_res_block_kwargs),
|
||||
# Upsample as long as it is not the last block.
|
||||
nn.ConvTranspose1d(dim_out, dim_out, 4, 2, 1) if not is_last else nn.Identity(),
|
||||
]
|
||||
@@ -693,29 +538,22 @@ class _ConditionalUnet1D(nn.Module):
|
||||
)
|
||||
|
||||
self.final_conv = nn.Sequential(
|
||||
_Conv1dBlock(down_dims[0], down_dims[0], kernel_size=kernel_size),
|
||||
nn.Conv1d(down_dims[0], input_dim, 1),
|
||||
_Conv1dBlock(cfg.down_dims[0], cfg.down_dims[0], kernel_size=cfg.kernel_size),
|
||||
nn.Conv1d(cfg.down_dims[0], cfg.action_dim, 1),
|
||||
)
|
||||
|
||||
def forward(self, x: Tensor, timestep: Tensor | int, local_cond=None, global_cond=None) -> Tensor:
|
||||
def forward(self, x: Tensor, timestep: Tensor | int, global_cond=None) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
x: (B, T, input_dim) tensor for input to the Unet.
|
||||
timestep: (B,) tensor of (timestep_we_are_denoising_from - 1).
|
||||
local_cond: (B, T, local_cond_dim)
|
||||
global_cond: (B, global_cond_dim)
|
||||
output: (B, T, input_dim)
|
||||
Returns:
|
||||
(B, T, input_dim)
|
||||
(B, T, input_dim) diffusion model prediction.
|
||||
"""
|
||||
# For 1D convolutions we'll need feature dimension first.
|
||||
x = einops.rearrange(x, "b t d -> b d t")
|
||||
if local_cond is not None:
|
||||
if self.local_cond_down_encoder is None or self.local_cond_up_encoder is None:
|
||||
raise ValueError(
|
||||
"`local_cond` was provided but the relevant encoders weren't built at initialization."
|
||||
)
|
||||
local_cond = einops.rearrange(local_cond, "b t d -> b d t")
|
||||
|
||||
timesteps_embed = self.diffusion_step_encoder(timestep)
|
||||
|
||||
@@ -725,11 +563,10 @@ class _ConditionalUnet1D(nn.Module):
|
||||
else:
|
||||
global_feature = timesteps_embed
|
||||
|
||||
# Run encoder, keeping track of skip features to pass to the decoder.
|
||||
encoder_skip_features: list[Tensor] = []
|
||||
for idx, (resnet, resnet2, downsample) in enumerate(self.down_modules):
|
||||
for resnet, resnet2, downsample in self.down_modules:
|
||||
x = resnet(x, global_feature)
|
||||
if idx == 0 and local_cond is not None:
|
||||
x = x + self.local_cond_down_encoder(local_cond, global_feature)
|
||||
x = resnet2(x, global_feature)
|
||||
encoder_skip_features.append(x)
|
||||
x = downsample(x)
|
||||
@@ -737,14 +574,10 @@ class _ConditionalUnet1D(nn.Module):
|
||||
for mid_module in self.mid_modules:
|
||||
x = mid_module(x, global_feature)
|
||||
|
||||
for idx, (resnet, resnet2, upsample) in enumerate(self.up_modules):
|
||||
# Run decoder, using the skip features from the encoder.
|
||||
for resnet, resnet2, upsample in self.up_modules:
|
||||
x = torch.cat((x, encoder_skip_features.pop()), dim=1)
|
||||
x = resnet(x, global_feature)
|
||||
# Note: The condition in the original implementation is:
|
||||
# if idx == len(self.up_modules) and local_cond is not None:
|
||||
# But as they mention in their comments, this is incorrect. We use the correct condition here.
|
||||
if idx == (len(self.up_modules) - 1) and local_cond is not None:
|
||||
x = x + self.local_cond_up_encoder(local_cond, global_feature)
|
||||
x = resnet2(x, global_feature)
|
||||
x = upsample(x)
|
||||
|
||||
@@ -766,17 +599,17 @@ class _ConditionalResidualBlock1D(nn.Module):
|
||||
n_groups: int = 8,
|
||||
# Set to True to do scale modulation with FiLM as well as bias modulation (defaults to False meaning
|
||||
# FiLM just modulates bias).
|
||||
film_scale_modulation: bool = False,
|
||||
use_film_scale_modulation: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.film_scale_modulation = film_scale_modulation
|
||||
self.use_film_scale_modulation = use_film_scale_modulation
|
||||
self.out_channels = out_channels
|
||||
|
||||
self.conv1 = _Conv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
|
||||
|
||||
# FiLM modulation (https://arxiv.org/abs/1709.07871) outputs per-channel bias and (maybe) scale.
|
||||
cond_channels = out_channels * 2 if film_scale_modulation else out_channels
|
||||
cond_channels = out_channels * 2 if use_film_scale_modulation else out_channels
|
||||
self.cond_encoder = nn.Sequential(nn.Mish(), nn.Linear(cond_dim, cond_channels))
|
||||
|
||||
self.conv2 = _Conv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups)
|
||||
@@ -798,7 +631,7 @@ class _ConditionalResidualBlock1D(nn.Module):
|
||||
|
||||
# Get condition embedding. Unsqueeze for broadcasting to `out`, resulting in (B, out_channels, 1).
|
||||
cond_embed = self.cond_encoder(cond).unsqueeze(-1)
|
||||
if self.film_scale_modulation:
|
||||
if self.use_film_scale_modulation:
|
||||
# Treat the embedding as a list of scales and biases.
|
||||
scale = cond_embed[:, : self.out_channels]
|
||||
bias = cond_embed[:, self.out_channels :]
|
||||
@@ -817,9 +650,7 @@ class _EMA:
|
||||
Exponential Moving Average of models weights
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, model, update_after_step=0, inv_gamma=1.0, power=2 / 3, min_value=0.0, max_value=0.9999
|
||||
):
|
||||
def __init__(self, cfg: DiffusionConfig, model: nn.Module):
|
||||
"""
|
||||
@crowsonkb's notes on EMA Warmup:
|
||||
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
|
||||
@@ -829,18 +660,18 @@ class _EMA:
|
||||
Args:
|
||||
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
||||
power (float): Exponential factor of EMA warmup. Default: 2/3.
|
||||
min_value (float): The minimum EMA decay rate. Default: 0.
|
||||
min_alpha (float): The minimum EMA decay rate. Default: 0.
|
||||
"""
|
||||
|
||||
self.averaged_model = model
|
||||
self.averaged_model.eval()
|
||||
self.averaged_model.requires_grad_(False)
|
||||
|
||||
self.update_after_step = update_after_step
|
||||
self.inv_gamma = inv_gamma
|
||||
self.power = power
|
||||
self.min_value = min_value
|
||||
self.max_value = max_value
|
||||
self.update_after_step = cfg.ema_update_after_step
|
||||
self.inv_gamma = cfg.ema_inv_gamma
|
||||
self.power = cfg.ema_power
|
||||
self.min_alpha = cfg.ema_min_alpha
|
||||
self.max_alpha = cfg.ema_max_alpha
|
||||
|
||||
self.alpha = 0.0
|
||||
self.optimization_step = 0
|
||||
@@ -855,7 +686,7 @@ class _EMA:
|
||||
if step <= 0:
|
||||
return 0.0
|
||||
|
||||
return max(self.min_value, min(value, self.max_value))
|
||||
return max(self.min_alpha, min(value, self.max_alpha))
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, new_model):
|
||||
|
||||
Reference in New Issue
Block a user