Improve dataset examples (#82)

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
This commit is contained in:
Remi
2024-04-18 11:43:16 +02:00
committed by GitHub
parent d5c4b0c344
commit 0928afd37d
15 changed files with 274 additions and 165 deletions

View File

@@ -1,6 +1,7 @@
from copy import deepcopy
from math import ceil
import datasets
import einops
import torch
import tqdm
@@ -8,7 +9,7 @@ import tqdm
def load_previous_and_future_frames(
item: dict[str, torch.Tensor],
data_dict: dict[str, torch.Tensor],
hf_dataset: datasets.Dataset,
delta_timestamps: dict[str, list[float]],
tol: float = 0.04,
) -> dict[torch.Tensor]:
@@ -24,7 +25,7 @@ def load_previous_and_future_frames(
Parameters:
- item (dict): A dictionary containing all the data related to a frame. It is the result of `dataset[idx]`. Each key corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- data_dict (dict): A dictionary containing the full dataset. Each key corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- hf_dataset (datasets.Dataset): A dictionary containing the full dataset. Each key corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible modality to be retrieved. These deltas are added to the item timestamp to form the query timestamps.
- tol (float, optional): The tolerance level used to determine if a data point is close enough to the query timestamp. Defaults to 0.04.
@@ -40,7 +41,7 @@ def load_previous_and_future_frames(
ep_data_ids = torch.arange(ep_data_id_from, ep_data_id_to, 1)
# load timestamps
ep_timestamps = data_dict.select_columns("timestamp")[ep_data_id_from:ep_data_id_to]["timestamp"]
ep_timestamps = hf_dataset.select_columns("timestamp")[ep_data_id_from:ep_data_id_to]["timestamp"]
# we make the assumption that the timestamps are sorted
ep_first_ts = ep_timestamps[0]
@@ -70,7 +71,7 @@ def load_previous_and_future_frames(
data_ids = ep_data_ids[argmin_]
# load frames modality
item[key] = data_dict.select_columns(key)[data_ids][key]
item[key] = hf_dataset.select_columns(key)[data_ids][key]
item[f"{key}_is_pad"] = is_pad
return item