Feat: Improve hub integration (#1382)
* feat(policies): Initial setup to push policies to hub with tags and model card * feat: add dataset that is used to train * Add model template summary * fix: Update link model_card template * fix: remove print * fix: change import name * fix: add model summary in template * fix: minor text * fix: comments Lucain * fix: feedback steven * fix: restructure push to hub * fix: remove unneeded changes * fix: import * fix: import 2 * Add MANIFEST.in * fix: feedback pr * Fix tests * tests: Add smolvla end-to-end test * Fix: smolvla test * fix test name * fix policy tests * Add push to hub false policy tests * Do push to hub cleaner * fix(ci): add push_to_hub false in tests --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co>
This commit is contained in:
@@ -255,7 +255,8 @@ python lerobot/scripts/train.py \
|
||||
--output_dir=outputs/train/act_so101_test \
|
||||
--job_name=act_so101_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
--wandb.enable=true \
|
||||
--policy.repo_id=${HF_USER}/my_policy
|
||||
```
|
||||
|
||||
Let's explain the command:
|
||||
@@ -273,6 +274,10 @@ python lerobot/scripts/train.py \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
If you do not want to push your model to the hub after training use `--policy.push_to_hub=false`.
|
||||
|
||||
Additionally you can provide extra `tags` or specify a `license` for your model or make the model repo `private` by adding this: `--policy.private=true --policy.tags=\[ppo,rl\] --policy.license=mit`
|
||||
|
||||
#### Train using Collab
|
||||
If your local computer doesn't have a powerful GPU you could utilize Google Collab to train your model by following the [ACT training notebook](./notebooks#training-act).
|
||||
|
||||
|
||||
Reference in New Issue
Block a user