[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot]
2025-03-24 13:41:27 +00:00
committed by Michel Aractingi
parent 2abbd60a0d
commit 0ea27704f6
123 changed files with 1161 additions and 3425 deletions

View File

@@ -43,10 +43,7 @@ pprint(lerobot.available_datasets)
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
hub_api = HfApi()
repo_ids = [
info.id
for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])
]
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
pprint(repo_ids)
# Or simply explore them in your web browser directly at:
@@ -61,9 +58,7 @@ ds_meta = LeRobotDatasetMetadata(repo_id)
# structure of the dataset without downloading the actual data yet (only metadata files — which are
# lightweight).
print(f"Total number of episodes: {ds_meta.total_episodes}")
print(
f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}"
)
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
print(f"Frames per second used during data collection: {ds_meta.fps}")
print(f"Robot type: {ds_meta.robot_type}")
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")

View File

@@ -51,18 +51,12 @@ def main():
# - dataset stats: for normalization and denormalization of input/outputs
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
features = dataset_to_policy_features(dataset_metadata.features)
output_features = {
key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION
}
input_features = {
key: ft for key, ft in features.items() if key not in output_features
}
output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
input_features = {key: ft for key, ft in features.items() if key not in output_features}
# Policies are initialized with a configuration class, in this case `DiffusionConfig`. For this example,
# we'll just use the defaults and so no arguments other than input/output features need to be passed.
cfg = DiffusionConfig(
input_features=input_features, output_features=output_features
)
cfg = DiffusionConfig(input_features=input_features, output_features=output_features)
# We can now instantiate our policy with this config and the dataset stats.
policy = DiffusionPolicy(cfg, dataset_stats=dataset_metadata.stats)
@@ -72,12 +66,8 @@ def main():
# Another policy-dataset interaction is with the delta_timestamps. Each policy expects a given number frames
# which can differ for inputs, outputs and rewards (if there are some).
delta_timestamps = {
"observation.image": [
i / dataset_metadata.fps for i in cfg.observation_delta_indices
],
"observation.state": [
i / dataset_metadata.fps for i in cfg.observation_delta_indices
],
"observation.image": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"observation.state": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"action": [i / dataset_metadata.fps for i in cfg.action_delta_indices],
}
@@ -129,10 +119,7 @@ def main():
done = False
while not done:
for batch in dataloader:
batch = {
k: (v.to(device) if isinstance(v, torch.Tensor) else v)
for k, v in batch.items()
}
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
loss, _ = policy.forward(batch)
loss.backward()
optimizer.step()

View File

@@ -48,14 +48,10 @@ transforms = v2.Compose(
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(
dataset_repo_id, episodes=[0], image_transforms=transforms
)
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][
transformed_dataset.meta.camera_keys[0]
]
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")

View File

@@ -90,9 +90,7 @@ def main():
train_dataset = LeRobotDataset(
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset(
"lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset("lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")