Loads episode_data_index and stats during dataset __init__ (#85)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
This commit is contained in:
@@ -1,20 +1,26 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import pytest
|
||||
import torch
|
||||
from datasets import Dataset
|
||||
from safetensors.torch import load_file
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.pusht import PushtDataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
compute_stats,
|
||||
flatten_dict,
|
||||
get_stats_einops_patterns,
|
||||
hf_transform_to_torch,
|
||||
load_previous_and_future_frames,
|
||||
unflatten_dict,
|
||||
)
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||
@@ -39,8 +45,8 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
|
||||
keys_ndim_required = [
|
||||
("action", 1, True),
|
||||
("episode_id", 0, True),
|
||||
("frame_id", 0, True),
|
||||
("episode_index", 0, True),
|
||||
("frame_index", 0, True),
|
||||
("timestamp", 0, True),
|
||||
# TODO(rcadene): should we rename it agent_pos?
|
||||
("observation.state", 1, True),
|
||||
@@ -48,12 +54,6 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
("next.done", 0, False),
|
||||
]
|
||||
|
||||
for key in image_keys:
|
||||
keys_ndim_required.append(
|
||||
(key, 3, True),
|
||||
)
|
||||
assert dataset.hf_dataset[key].dtype == torch.uint8, f"{key}"
|
||||
|
||||
# test number of dimensions
|
||||
for key, ndim, required in keys_ndim_required:
|
||||
if key not in item:
|
||||
@@ -94,26 +94,21 @@ def test_compute_stats_on_xarm():
|
||||
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
because we are working with a small dataset).
|
||||
"""
|
||||
# TODO(rcadene): Reduce size of dataset sample on which stats compute is tested
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
|
||||
data_dir = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
|
||||
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
||||
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
||||
|
||||
dataset = XarmDataset(
|
||||
dataset_id="xarm_lift_medium",
|
||||
root=data_dir,
|
||||
transform=transform,
|
||||
root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None,
|
||||
)
|
||||
|
||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# dataset into even batches.
|
||||
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
|
||||
computed_stats = compute_stats(dataset.hf_dataset, batch_size=int(len(dataset) * 0.25))
|
||||
|
||||
# get einops patterns to aggregate batches and compute statistics
|
||||
stats_patterns = get_stats_einops_patterns(dataset)
|
||||
stats_patterns = get_stats_einops_patterns(dataset.hf_dataset)
|
||||
|
||||
# get all frames from the dataset in the same dtype and range as during compute_stats
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
@@ -122,18 +117,19 @@ def test_compute_stats_on_xarm():
|
||||
batch_size=len(dataset),
|
||||
shuffle=False,
|
||||
)
|
||||
hf_dataset = next(iter(dataloader))
|
||||
full_batch = next(iter(dataloader))
|
||||
|
||||
# compute stats based on all frames from the dataset without any batching
|
||||
expected_stats = {}
|
||||
for k, pattern in stats_patterns.items():
|
||||
full_batch[k] = full_batch[k].float()
|
||||
expected_stats[k] = {}
|
||||
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
|
||||
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
|
||||
expected_stats[k]["std"] = torch.sqrt(
|
||||
einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
)
|
||||
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
|
||||
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
|
||||
|
||||
# test computed stats match expected stats
|
||||
for k in stats_patterns:
|
||||
@@ -142,11 +138,10 @@ def test_compute_stats_on_xarm():
|
||||
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
|
||||
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
# TODO(rcadene): check that the stats used for training are correct too
|
||||
# # load stats that are expected to match the ones returned by computed_stats
|
||||
# assert (dataset.data_dir / "stats.pth").exists()
|
||||
# loaded_stats = torch.load(dataset.data_dir / "stats.pth")
|
||||
# load stats used during training which are expected to match the ones returned by computed_stats
|
||||
loaded_stats = dataset.stats # noqa: F841
|
||||
|
||||
# TODO(rcadene): we can't test this because expected_stats is computed on a subset
|
||||
# # test loaded stats match expected stats
|
||||
# for k in stats_patterns:
|
||||
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
@@ -160,15 +155,18 @@ def test_load_previous_and_future_frames_within_tolerance():
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
||||
tol = 0.04
|
||||
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
item = hf_dataset[2]
|
||||
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
|
||||
assert not is_pad.any(), "Unexpected padding detected"
|
||||
@@ -179,16 +177,19 @@ def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
||||
tol = 0.04
|
||||
item = hf_dataset[2]
|
||||
with pytest.raises(AssertionError):
|
||||
load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
||||
@@ -196,17 +197,102 @@ def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
||||
tol = 0.04
|
||||
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
item = hf_dataset[2]
|
||||
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||
assert torch.equal(
|
||||
is_pad, torch.tensor([True, False, False, True, True])
|
||||
), "Padding does not match expected values"
|
||||
|
||||
|
||||
def test_flatten_unflatten_dict():
|
||||
d = {
|
||||
"obs": {
|
||||
"min": 0,
|
||||
"max": 1,
|
||||
"mean": 2,
|
||||
"std": 3,
|
||||
},
|
||||
"action": {
|
||||
"min": 4,
|
||||
"max": 5,
|
||||
"mean": 6,
|
||||
"std": 7,
|
||||
},
|
||||
}
|
||||
|
||||
original_d = deepcopy(d)
|
||||
d = unflatten_dict(flatten_dict(d))
|
||||
|
||||
# test equality between nested dicts
|
||||
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
|
||||
|
||||
|
||||
def test_backward_compatibility():
|
||||
"""This tests artifacts have been generated by `tests/scripts/save_dataset_to_safetensors.py`."""
|
||||
# TODO(rcadene): make it work for all datasets with LeRobotDataset(repo_id)
|
||||
dataset_id = "pusht"
|
||||
data_dir = Path("tests/data/save_dataset_to_safetensors") / dataset_id
|
||||
|
||||
dataset = PushtDataset(
|
||||
dataset_id=dataset_id,
|
||||
split="train",
|
||||
root=Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None,
|
||||
)
|
||||
|
||||
def load_and_compare(i):
|
||||
new_frame = dataset[i]
|
||||
old_frame = load_file(data_dir / f"frame_{i}.safetensors")
|
||||
|
||||
new_keys = set(new_frame.keys())
|
||||
old_keys = set(old_frame.keys())
|
||||
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
|
||||
|
||||
for key in new_frame:
|
||||
assert (
|
||||
new_frame[key] == old_frame[key]
|
||||
).all(), f"{key=} for index={i} does not contain the same value"
|
||||
|
||||
# test2 first frames of first episode
|
||||
i = dataset.episode_data_index["from"][0].item()
|
||||
load_and_compare(i)
|
||||
load_and_compare(i + 1)
|
||||
|
||||
# test 2 frames at the middle of first episode
|
||||
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
|
||||
load_and_compare(i)
|
||||
load_and_compare(i + 1)
|
||||
|
||||
# test 2 last frames of first episode
|
||||
i = dataset.episode_data_index["to"][0].item()
|
||||
load_and_compare(i - 2)
|
||||
load_and_compare(i - 1)
|
||||
|
||||
# TODO(rcadene): Enable testing on second and last episode
|
||||
# We currently cant because our test dataset only contains the first episode
|
||||
|
||||
# # test 2 first frames of second episode
|
||||
# i = dataset.episode_data_index["from"][1].item()
|
||||
# load_and_compare(i)
|
||||
# load_and_compare(i+1)
|
||||
|
||||
# #test 2 last frames of second episode
|
||||
# i = dataset.episode_data_index["to"][1].item()
|
||||
# load_and_compare(i-2)
|
||||
# load_and_compare(i-1)
|
||||
|
||||
# # test 2 last frames of last episode
|
||||
# i = dataset.episode_data_index["to"][-1].item()
|
||||
# load_and_compare(i-2)
|
||||
# load_and_compare(i-1)
|
||||
|
||||
Reference in New Issue
Block a user