test_envs.py are passing, remove simxarm and pusht directories

This commit is contained in:
Cadene
2024-04-05 16:21:07 +00:00
parent f56b1a0e16
commit 26602269cd
42 changed files with 86 additions and 2444 deletions

View File

@@ -1,47 +1,47 @@
import pytest
from tensordict import TensorDict
import torch
from torchrl.envs.utils import check_env_specs, step_mdp
from lerobot.common.datasets.factory import make_dataset
import gymnasium as gym
from gymnasium.utils.env_checker import check_env
from lerobot.common.envs.aloha.env import AlohaEnv
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.pusht.env import PushtEnv
from lerobot.common.envs.simxarm.env import SimxarmEnv
from lerobot.common.utils import init_hydra_config
from lerobot.common.envs.utils import preprocess_observation
# import dmc_aloha # noqa: F401
from .utils import DEVICE, DEFAULT_CONFIG_PATH
def print_spec_rollout(env):
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
print("done_spec:", env.done_spec)
# def print_spec_rollout(env):
# print("observation_spec:", env.observation_spec)
# print("action_spec:", env.action_spec)
# print("reward_spec:", env.reward_spec)
# print("done_spec:", env.done_spec)
td = env.reset()
print("reset tensordict", td)
# td = env.reset()
# print("reset tensordict", td)
td = env.rand_step(td)
print("random step tensordict", td)
# td = env.rand_step(td)
# print("random step tensordict", td)
def simple_rollout(steps=100):
# preallocate:
data = TensorDict({}, [steps])
# reset
_data = env.reset()
for i in range(steps):
_data["action"] = env.action_spec.rand()
_data = env.step(_data)
data[i] = _data
_data = step_mdp(_data, keep_other=True)
return data
# def simple_rollout(steps=100):
# # preallocate:
# data = TensorDict({}, [steps])
# # reset
# _data = env.reset()
# for i in range(steps):
# _data["action"] = env.action_spec.rand()
# _data = env.step(_data)
# data[i] = _data
# _data = step_mdp(_data, keep_other=True)
# return data
print("data from rollout:", simple_rollout(100))
# print("data from rollout:", simple_rollout(100))
@pytest.mark.skip("TODO")
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
[
@@ -63,50 +63,41 @@ def test_aloha(task, from_pixels, pixels_only):
@pytest.mark.parametrize(
"task, obs_type",
"env_task, obs_type",
[
("XarmLift-v0", "state"),
("XarmLift-v0", "pixels"),
("XarmLift-v0", "pixels_agent_pos"),
# TODO(aliberts): Add simxarm other tasks
# TODO(aliberts): Add gym_xarm other tasks
],
)
def test_xarm(env_task, obs_type):
import gym_xarm
import gym_xarm # noqa: F401
env = gym.make(f"gym_xarm/{env_task}", obs_type=obs_type)
# env = SimxarmEnv(
# task,
# from_pixels=from_pixels,
# pixels_only=pixels_only,
# image_size=84 if from_pixels else None,
# )
# print_spec_rollout(env)
# check_env_specs(env)
check_env(env)
@pytest.mark.parametrize(
"from_pixels,pixels_only",
"env_task, obs_type",
[
(True, False),
("PushTPixels-v0", "state"),
("PushTPixels-v0", "pixels"),
("PushTPixels-v0", "pixels_agent_pos"),
],
)
def test_pusht(from_pixels, pixels_only):
env = PushtEnv(
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=96 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
def test_pusht(env_task, obs_type):
import gym_pusht # noqa: F401
env = gym.make(f"gym_pusht/{env_task}", obs_type=obs_type)
check_env(env)
@pytest.mark.parametrize(
"env_name",
[
"simxarm",
"pusht",
"aloha",
"simxarm",
# "aloha",
],
)
def test_factory(env_name):
@@ -118,15 +109,12 @@ def test_factory(env_name):
dataset = make_dataset(cfg)
env = make_env(cfg)
obs, info = env.reset()
obs = {key: obs[key][None, ...] for key in obs}
obs = preprocess_observation(obs, transform=dataset.transform)
for key in dataset.image_keys:
assert env.reset().get(key).dtype == torch.uint8
check_env_specs(env)
env = make_env(cfg, transform=dataset.transform)
for key in dataset.image_keys:
img = env.reset().get(key)
img = obs[key]
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
check_env_specs(env)