Add api examples IL docs (#1391)

* feat: add api examples for record, replay, eval for il

* fix: Add typings utils.py

* fix: Add inference to text eval

* fix: Add placeholders dataset and policy repo_ids

* fix: Improve text

* fix: Add type to 3rd ;)

* chore(docs): update API examples for replay, eval and record

---------

Co-authored-by: Steven Palma <steven.palma@huggingface.co>
This commit is contained in:
Pepijn
2025-06-27 11:57:24 +02:00
committed by GitHub
parent f3d931e1b2
commit 2f9ba4e2cc
2 changed files with 230 additions and 7 deletions

View File

@@ -154,7 +154,10 @@ HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset. To record 2 episodes and upload your dataset to the hub, execute this command tailored to the SO101.
Now you can record a dataset. To record 5 episodes and upload your dataset to the hub, adapt the code below for your robot and execute the command or API example.
<hfoptions id="record">
<hfoption id="Command">
```bash
python -m lerobot.record \
--robot.type=so101_follower \
@@ -166,9 +169,111 @@ python -m lerobot.record \
--teleop.id=my_awesome_leader_arm \
--display_data=true \
--dataset.repo_id=${HF_USER}/record-test \
--dataset.num_episodes=2 \
--dataset.num_episodes=5 \
--dataset.single_task="Grab the black cube"
```
</hfoption>
<hfoption id="API example">
```python
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import hw_to_dataset_features
from lerobot.common.robots.so100_follower import SO100Follower, SO100FollowerConfig
from lerobot.common.teleoperators.so100_leader.config_so100_leader import SO100LeaderConfig
from lerobot.common.teleoperators.so100_leader.so100_leader import SO100Leader
from lerobot.common.utils.control_utils import init_keyboard_listener
from lerobot.common.utils.utils import log_say
from lerobot.common.utils.visualization_utils import _init_rerun
from lerobot.record import record_loop
NUM_EPISODES = 5
FPS = 30
EPISODE_TIME_SEC = 60
RESET_TIME_SEC = 10
TASK_DESCRIPTION = "My task description"
# Create the robot and teleoperator configurations
camera_config = {"front": OpenCVCameraConfig(index_or_path=0, width=640, height=480, fps=FPS)}
robot_config = SO100FollowerConfig(
port="/dev/tty.usbmodem58760434471", id="my_awesome_follower_arm", cameras=camera_config
)
teleop_config = SO100LeaderConfig(port="/dev/tty.usbmodem585A0077581", id="my_awesome_leader_arm")
# Initialize the robot and teleoperator
robot = SO100Follower(robot_config)
teleop = SO100Leader(teleop_config)
# Configure the dataset features
action_features = hw_to_dataset_features(robot.action_features, "action")
obs_features = hw_to_dataset_features(robot.observation_features, "observation")
dataset_features = {**action_features, **obs_features}
# Create the dataset
dataset = LeRobotDataset.create(
repo_id="<hf_username>/<dataset_repo_id>",
fps=FPS,
features=dataset_features,
robot_type=robot.name,
use_videos=True,
image_writer_threads=4,
)
# Initialize the keyboard listener and rerun visualization
_, events = init_keyboard_listener()
_init_rerun(session_name="recording")
# Connect the robot and teleoperator
robot.connect()
teleop.connect()
for episode_idx in range(NUM_EPISODES):
log_say(f"Recording episode {episode_idx + 1} of {NUM_EPISODES}")
record_loop(
robot=robot,
events=events,
fps=FPS,
teleop=teleop,
dataset=dataset,
control_time_s=EPISODE_TIME_SEC,
single_task=TASK_DESCRIPTION,
display_data=True,
)
# Reset the environment if not stopping or re-recording
if not events["stop_recording"] and (episode_idx < NUM_EPISODES - 1 or events["rerecord_episode"]):
log_say("Reset the environment")
record_loop(
robot=robot,
events=events,
fps=FPS,
teleop=teleop,
control_time_s=RESET_TIME_SEC,
single_task=TASK_DESCRIPTION,
display_data=True,
)
if events["rerecord_episode"]:
log_say("Re-recording episode")
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode()
if events["stop_recording"]:
log_say("Exiting session")
break
# Clean up
log_say("Stop recording")
robot.disconnect()
teleop.disconnect()
dataset.push_to_hub()
```
</hfoption>
</hfoptions>
#### Dataset upload
Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}`. At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
@@ -233,7 +338,10 @@ echo ${HF_USER}/so101_test
A useful feature is the `replay` function, which allows you to replay any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
You can replay the first episode on your robot with either the command below or with the API example:
<hfoptions id="replay">
<hfoption id="Command">
```bash
python -m lerobot.replay \
--robot.type=so101_follower \
@@ -242,6 +350,42 @@ python -m lerobot.replay \
--dataset.repo_id=${HF_USER}/record-test \
--dataset.episode=0 # choose the episode you want to replay
```
</hfoption>
<hfoption id="API example">
```python
import time
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robots.so100_follower.config_so100_follower import SO100FollowerConfig
from lerobot.common.robots.so100_follower.so100_follower import SO100Follower
from lerobot.common.utils.robot_utils import busy_wait
from lerobot.common.utils.utils import log_say
episode_idx = 0
robot_config = SO100FollowerConfig(port="/dev/tty.usbmodem58760434471", id="my_awesome_follower_arm")
robot = SO100Follower(robot_config)
robot.connect()
dataset = LeRobotDataset("<hf_username>/<dataset_repo_id>", episodes=[episode_idx])
actions = dataset.hf_dataset.select_columns("action")
log_say(f"Replaying episode {episode_idx}")
for idx in range(dataset.num_frames):
t0 = time.perf_counter()
action = {
name: float(actions[idx]["action"][i]) for i, name in enumerate(dataset.features["action"]["names"])
}
robot.send_action(action)
busy_wait(1.0 / dataset.fps - (time.perf_counter() - t0))
robot.disconnect()
```
</hfoption>
</hfoptions>
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
@@ -296,9 +440,12 @@ huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
## Run inference and evaluate your policy
You can use the `record` script from [`lerobot/record.py`](https://github.com/huggingface/lerobot/blob/main/lerobot/record.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
You can use the `record` script from [`lerobot/record.py`](https://github.com/huggingface/lerobot/blob/main/lerobot/record.py) with a policy checkpoint as input, to run inference and evaluate your policy. For instance, run this command or API example to run inference and record 10 evaluation episodes:
<hfoptions id="eval">
<hfoption id="Command">
```bash
python -m lerobot.record \
--robot.type=so100_follower \
@@ -314,6 +461,82 @@ python -m lerobot.record \
# --teleop.id=my_awesome_leader_arm \
--policy.path=${HF_USER}/my_policy
```
</hfoption>
<hfoption id="API example">
```python
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import hw_to_dataset_features
from lerobot.common.policies.act.modeling_act import ACTPolicy
from lerobot.common.robots.so100_follower.config_so100_follower import SO100FollowerConfig
from lerobot.common.robots.so100_follower.so100_follower import SO100Follower
from lerobot.common.utils.control_utils import init_keyboard_listener
from lerobot.common.utils.utils import log_say
from lerobot.common.utils.visualization_utils import _init_rerun
from lerobot.record import record_loop
NUM_EPISODES = 5
FPS = 30
EPISODE_TIME_SEC = 60
TASK_DESCRIPTION = "My task description"
# Create the robot configuration
camera_config = {"front": OpenCVCameraConfig(index_or_path=0, width=640, height=480, fps=FPS)}
robot_config = SO100FollowerConfig(
port="/dev/tty.usbmodem58760434471", id="my_awesome_follower_arm", cameras=camera_config
)
# Initialize the robot
robot = SO100Follower(robot_config)
# Initialize the policy
policy = ACTPolicy.from_pretrained("<hf_username>/<my_policy_repo_id>")
# Configure the dataset features
action_features = hw_to_dataset_features(robot.action_features, "action")
obs_features = hw_to_dataset_features(robot.observation_features, "observation")
dataset_features = {**action_features, **obs_features}
# Create the dataset
dataset = LeRobotDataset.create(
repo_id="<hf_username>/eval_<dataset_repo_id>",
fps=FPS,
features=dataset_features,
robot_type=robot.name,
use_videos=True,
image_writer_threads=4,
)
# Initialize the keyboard listener and rerun visualization
_, events = init_keyboard_listener()
_init_rerun(session_name="recording")
# Connect the robot
robot.connect()
for episode_idx in range(NUM_EPISODES):
log_say(f"Running inference, recording eval episode {episode_idx + 1} of {NUM_EPISODES}")
# Run the policy inference loop
record_loop(
robot=robot,
events=events,
fps=FPS,
policy=policy,
dataset=dataset,
control_time_s=EPISODE_TIME_SEC,
single_task=TASK_DESCRIPTION,
display_data=True,
)
dataset.save_episode()
# Clean up
robot.disconnect()
dataset.push_to_hub()
```
</hfoption>
</hfoptions>
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).