Use v1.1, hf_transform_to_torch, Add 3 xarm datasets

This commit is contained in:
Cadene
2024-04-19 18:17:13 +00:00
parent 714a776277
commit 35a573c98e
12 changed files with 122 additions and 74 deletions

View File

@@ -18,7 +18,6 @@ from lerobot.common.datasets.utils import (
load_previous_and_future_frames,
unflatten_dict,
)
from lerobot.common.transforms import Prod
from lerobot.common.utils.utils import init_hydra_config
from .utils import DEFAULT_CONFIG_PATH, DEVICE
@@ -102,22 +101,18 @@ def test_compute_stats_on_xarm():
data_dir = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
# get transform to convert images from uint8 [0,255] to float32 [0,1]
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
dataset = XarmDataset(
dataset_id="xarm_lift_medium",
root=data_dir,
transform=transform,
)
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
# dataset into even batches.
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
computed_stats = compute_stats(dataset.hf_dataset, batch_size=int(len(dataset) * 0.25))
# get einops patterns to aggregate batches and compute statistics
stats_patterns = get_stats_einops_patterns(dataset)
stats_patterns = get_stats_einops_patterns(dataset.hf_dataset)
# get all frames from the dataset in the same dtype and range as during compute_stats
dataloader = torch.utils.data.DataLoader(
@@ -126,18 +121,18 @@ def test_compute_stats_on_xarm():
batch_size=len(dataset),
shuffle=False,
)
hf_dataset = next(iter(dataloader))
full_batch = next(iter(dataloader))
# compute stats based on all frames from the dataset without any batching
expected_stats = {}
for k, pattern in stats_patterns.items():
expected_stats[k] = {}
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
expected_stats[k]["std"] = torch.sqrt(
einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
)
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
# test computed stats match expected stats
for k in stats_patterns:
@@ -146,17 +141,15 @@ def test_compute_stats_on_xarm():
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
# TODO(rcadene): check that the stats used for training are correct too
# # load stats that are expected to match the ones returned by computed_stats
# assert (dataset.data_dir / "stats.pth").exists()
# loaded_stats = torch.load(dataset.data_dir / "stats.pth")
# load stats used during training which are expected to match the ones returned by computed_stats
loaded_stats = dataset.stats
# # test loaded stats match expected stats
# for k in stats_patterns:
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
# test loaded stats match expected stats
for k in stats_patterns:
assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
def test_load_previous_and_future_frames_within_tolerance():