Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore * chore: update pre-commit * chore(deps): update pyproject * fix(ci): multiple fixes * chore: pre-commit apply * chore: address review comments * Update pyproject.toml Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> * chore(deps): add todo --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
This commit is contained in:
@@ -1,28 +1,32 @@
|
||||
# Video benchmark
|
||||
|
||||
|
||||
## Questions
|
||||
|
||||
What is the optimal trade-off between:
|
||||
|
||||
- maximizing loading time with random access,
|
||||
- minimizing memory space on disk,
|
||||
- maximizing success rate of policies,
|
||||
- compatibility across devices/platforms for decoding videos (e.g. video players, web browsers).
|
||||
|
||||
How to encode videos?
|
||||
|
||||
- Which video codec (`-vcodec`) to use? h264, h265, AV1?
|
||||
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
|
||||
- How much compression (`-crf`)? No compression with `0`, intermediate compression with `25` or extreme with `50+`?
|
||||
- Which frequency to chose for key frames (`-g`)? A key frame every `10` frames?
|
||||
|
||||
How to decode videos?
|
||||
|
||||
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
|
||||
- What scenarios to use for the requesting timestamps during benchmark? (`timestamps_mode`)
|
||||
|
||||
|
||||
## Variables
|
||||
|
||||
**Image content & size**
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an apartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
|
||||
For these reasons, we run this benchmark on four representative datasets:
|
||||
|
||||
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
|
||||
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
|
||||
- `aliberts/paris_street`: (720 x 1280 pixels) real-world outdoor, moving camera.
|
||||
@@ -34,8 +38,9 @@ Note: The datasets used for this benchmark need to be image datasets, not video
|
||||
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
|
||||
|
||||
### Encoding parameters
|
||||
|
||||
| parameter | values |
|
||||
|-------------|--------------------------------------------------------------|
|
||||
| ----------- | ------------------------------------------------------------ |
|
||||
| **vcodec** | `libx264`, `libx265`, `libsvtav1` |
|
||||
| **pix_fmt** | `yuv444p`, `yuv420p` |
|
||||
| **g** | `1`, `2`, `3`, `4`, `5`, `6`, `10`, `15`, `20`, `40`, `None` |
|
||||
@@ -44,19 +49,23 @@ We might revisit this benchmark and find better settings if we train our policie
|
||||
Note that `crf` value might be interpreted differently by various video codecs. In other words, the same value used with one codec doesn't necessarily translate into the same compression level with another codec. In fact, the default value (`None`) isn't the same amongst the different video codecs. Importantly, it is also the case for many other ffmpeg arguments like `g` which specifies the frequency of the key frames.
|
||||
|
||||
For a comprehensive list and documentation of these parameters, see the ffmpeg documentation depending on the video codec used:
|
||||
|
||||
- h264: https://trac.ffmpeg.org/wiki/Encode/H.264
|
||||
- h265: https://trac.ffmpeg.org/wiki/Encode/H.265
|
||||
- AV1: https://trac.ffmpeg.org/wiki/Encode/AV1
|
||||
|
||||
### Decoding parameters
|
||||
|
||||
**Decoder**
|
||||
We tested two video decoding backends from torchvision:
|
||||
|
||||
- `pyav`
|
||||
- `video_reader` (requires to build torchvision from source)
|
||||
|
||||
**Requested timestamps**
|
||||
Given the way video decoding works, once a keyframe has been loaded, the decoding of subsequent frames is fast.
|
||||
This of course is affected by the `-g` parameter during encoding, which specifies the frequency of the keyframes. Given our typical use cases in robotics policies which might request a few timestamps in different random places, we want to replicate these use cases with the following scenarios:
|
||||
|
||||
- `1_frame`: 1 frame,
|
||||
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
|
||||
- `6_frames`: 6 consecutive frames (e.g. `[t + i / fps for i in range(6)]`)
|
||||
@@ -64,12 +73,13 @@ This of course is affected by the `-g` parameter during encoding, which specifie
|
||||
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
|
||||
|
||||
Additionally, because some policies might request single timestamps that are a few frames apart, we also have the following scenario:
|
||||
|
||||
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
|
||||
|
||||
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
|
||||
|
||||
|
||||
## Metrics
|
||||
|
||||
**Data compression ratio (lower is better)**
|
||||
`video_images_size_ratio` is the ratio of the memory space on disk taken by the encoded video over the memory space taken by the original images. For instance, `video_images_size_ratio=25%` means that the video takes 4 times less memory space on disk compared to the original images.
|
||||
|
||||
@@ -87,18 +97,18 @@ However, due to how video decoding is implemented with `pyav`, we don't have acc
|
||||
|
||||
One aspect that can't be measured here with those metrics is the compatibility of the encoding across platforms, in particular on web browser, for visualization purposes.
|
||||
h264, h265 and AV1 are all commonly used codecs and should not pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
|
||||
|
||||
- `yuv420p` is more widely supported across various platforms, including web browsers.
|
||||
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
|
||||
|
||||
|
||||
<!-- **Loss of a pretrained policy (higher is better)** (not available)
|
||||
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
|
||||
|
||||
**Success rate after retraining (higher is better)** (not available)
|
||||
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best. -->
|
||||
|
||||
|
||||
## How the benchmark works
|
||||
|
||||
The benchmark evaluates both encoding and decoding of video frames on the first episode of each dataset.
|
||||
|
||||
**Encoding:** for each `vcodec` and `pix_fmt` pair, we use a default value for `g` and `crf` upon which we change a single value (either `g` or `crf`) to one of the specified values (we don't test every combination of those as this would be computationally too heavy).
|
||||
@@ -110,15 +120,18 @@ Intermediate results saved for each `vcodec` and `pix_fmt` combination in csv ta
|
||||
These are then all concatenated to a single table ready for analysis.
|
||||
|
||||
## Caveats
|
||||
|
||||
We tried to measure the most impactful parameters for both encoding and decoding. However, for computational reasons we can't test out every combination.
|
||||
|
||||
Additional encoding parameters exist that are not included in this benchmark. In particular:
|
||||
|
||||
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
||||
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
|
||||
|
||||
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
|
||||
|
||||
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
|
||||
|
||||
- `torchaudio`
|
||||
- `ffmpegio`
|
||||
- `decord`
|
||||
@@ -127,16 +140,17 @@ Similarly on the decoding side, other decoders exist but are not implemented in
|
||||
Note as well that since we are mostly interested in the performance at decoding time (also because encoding is done only once before uploading a dataset), we did not measure encoding times nor have any metrics regarding encoding.
|
||||
However, besides the necessity to build ffmpeg from source, encoding did not pose any issue and it didn't take a significant amount of time during this benchmark.
|
||||
|
||||
|
||||
## Install
|
||||
|
||||
Building ffmpeg from source is required to include libx265 and libaom/libsvtav1 (av1) video codecs ([compilation guide](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu)).
|
||||
|
||||
**Note:** While you still need to build torchvision with a conda-installed `ffmpeg<4.3` to use the `video_reader` decoder (as described in [#220](https://github.com/huggingface/lerobot/pull/220)), you also need another version which is custom-built with all the video codecs for encoding. For the script to then use that version, you can prepend the command above with `PATH="$HOME/bin:$PATH"`, which is where ffmpeg should be built.
|
||||
|
||||
|
||||
## Adding a video decoder
|
||||
|
||||
Right now, we're only benchmarking the two video decoder available with torchvision: `pyav` and `video_reader`.
|
||||
You can easily add a new decoder to benchmark by adding it to this function in the script:
|
||||
|
||||
```diff
|
||||
def decode_video_frames(
|
||||
video_path: str,
|
||||
@@ -156,9 +170,10 @@ def decode_video_frames(
|
||||
raise NotImplementedError(backend)
|
||||
```
|
||||
|
||||
|
||||
## Example
|
||||
|
||||
For a quick run, you can try these parameters:
|
||||
|
||||
```bash
|
||||
python benchmark/video/run_video_benchmark.py \
|
||||
--output-dir outputs/video_benchmark \
|
||||
@@ -176,11 +191,12 @@ python benchmark/video/run_video_benchmark.py \
|
||||
--save-frames 0
|
||||
```
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
### Reproduce
|
||||
|
||||
We ran the benchmark with the following parameters:
|
||||
|
||||
```bash
|
||||
# h264 and h265 encodings
|
||||
python benchmark/video/run_video_benchmark.py \
|
||||
@@ -221,9 +237,10 @@ python benchmark/video/run_video_benchmark.py \
|
||||
|
||||
The full results are available [here](https://docs.google.com/spreadsheets/d/1OYJB43Qu8fC26k_OyoMFgGBBKfQRCi4BIuYitQnq3sw/edit?usp=sharing)
|
||||
|
||||
|
||||
### Parameters selected for LeRobotDataset
|
||||
|
||||
Considering these results, we chose what we think is the best set of encoding parameter:
|
||||
|
||||
- vcodec: `libsvtav1`
|
||||
- pix-fmt: `yuv420p`
|
||||
- g: `2`
|
||||
@@ -236,7 +253,7 @@ Since we're using av1 encoding, we're choosing the `pyav` decoder as `video_read
|
||||
These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_frames` and `backend=pyav`
|
||||
|
||||
| video_images_size_ratio | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|------------|---------|-----------|-----------|-----------|
|
||||
| ---------------------------------- | ---------- | ------- | --------- | --------- | --------- |
|
||||
| | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | **16.97%** | 17.58% | 18.57% | 18.86% | 22.06% |
|
||||
@@ -245,7 +262,7 @@ These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_
|
||||
| aliberts/kitchen | 1.40% | 1.39% | **1.00%** | **1.00%** | 2.52% |
|
||||
|
||||
| video_images_load_time_ratio | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|---------|---------|----------|---------|-----------|
|
||||
| ---------------------------------- | ------- | ------- | -------- | ------- | --------- |
|
||||
| | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | 6.45 | 5.19 | **1.90** | 2.12 | 2.47 |
|
||||
@@ -254,7 +271,7 @@ These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_
|
||||
| aliberts/kitchen | 1.46 | 1.46 | 0.28 | 0.51 | **0.26** |
|
||||
|
||||
| | | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|----------|----------|--------------|----------|-----------|--------------|
|
||||
| ---------------------------------- | -------- | -------- | ------------ | -------- | --------- | ------------ |
|
||||
| | | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | metric | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | avg_mse | 2.90E-04 | **2.03E-04** | 3.13E-04 | 2.29E-04 | 2.19E-04 |
|
||||
|
||||
Reference in New Issue
Block a user