Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore * chore: update pre-commit * chore(deps): update pyproject * fix(ci): multiple fixes * chore: pre-commit apply * chore: address review comments * Update pyproject.toml Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> * chore(deps): add todo --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
This commit is contained in:
@@ -11,7 +11,6 @@ This guide explains how to use the `gym_hil` simulation environments as an alter
|
||||
|
||||
Currently, the main environment is a Franka Panda robot simulation based on MuJoCo, with tasks like picking up a cube.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
First, install the `gym_hil` package within the LeRobot environment:
|
||||
@@ -25,8 +24,6 @@ pip install -e ".[hilserl]"
|
||||
- A gamepad or keyboard to control the robot
|
||||
- A Nvidia GPU
|
||||
|
||||
|
||||
|
||||
## Configuration
|
||||
|
||||
To use `gym_hil` with LeRobot, you need to create a configuration file. An example is provided [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/gym_hil_env.json). Key configuration sections include:
|
||||
@@ -35,14 +32,15 @@ To use `gym_hil` with LeRobot, you need to create a configuration file. An examp
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "hil",
|
||||
"name": "franka_sim",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"device": "cuda"
|
||||
"type": "hil",
|
||||
"name": "franka_sim",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"device": "cuda"
|
||||
}
|
||||
```
|
||||
|
||||
Available tasks:
|
||||
|
||||
- `PandaPickCubeBase-v0`: Basic environment
|
||||
- `PandaPickCubeGamepad-v0`: With gamepad control
|
||||
- `PandaPickCubeKeyboard-v0`: With keyboard control
|
||||
@@ -65,6 +63,7 @@ Available tasks:
|
||||
```
|
||||
|
||||
Important parameters:
|
||||
|
||||
- `gripper_penalty`: Penalty for excessive gripper movement
|
||||
- `use_gripper`: Whether to enable gripper control
|
||||
- `end_effector_step_sizes`: Size of the steps in the x,y,z axes of the end-effector
|
||||
@@ -76,40 +75,49 @@ Important parameters:
|
||||
|
||||
To run the environment, set mode to null:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
python -m lerobot.scripts.rl.gym_manipulator --config_path path/to/gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
### Recording a Dataset
|
||||
|
||||
To collect a dataset, set the mode to `record` whilst defining the repo_id and number of episodes to record:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
python -m lerobot.scripts.rl.gym_manipulator --config_path path/to/gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
### Training a Policy
|
||||
|
||||
To train a policy, checkout the configuration example available [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/train_gym_hil_env.json) and run the actor and learner servers:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
python -m lerobot.scripts.rl.actor --config_path path/to/train_gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
In a different terminal, run the learner server:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
python -m lerobot.scripts.rl.learner --config_path path/to/train_gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
The simulation environment provides a safe and repeatable way to develop and test your Human-In-the-Loop reinforcement learning components before deploying to real robots.
|
||||
|
||||
Congrats 🎉, you have finished this tutorial!
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb).
|
||||
|
||||
Paper citation:
|
||||
|
||||
```
|
||||
@article{luo2024precise,
|
||||
title={Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning},
|
||||
|
||||
Reference in New Issue
Block a user