Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore * chore: update pre-commit * chore(deps): update pyproject * fix(ci): multiple fixes * chore: pre-commit apply * chore: address review comments * Update pyproject.toml Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> * chore(deps): add todo --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
This commit is contained in:
@@ -3,6 +3,7 @@
|
||||
This tutorial will explain how to train a neural network to control a real robot autonomously.
|
||||
|
||||
**You'll learn:**
|
||||
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
@@ -14,7 +15,10 @@ By following these steps, you'll be able to replicate tasks, such as picking up
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot_task.mp4" type="video/mp4" />
|
||||
<source
|
||||
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot_task.mp4"
|
||||
type="video/mp4"
|
||||
/>
|
||||
</video>
|
||||
</div>
|
||||
|
||||
@@ -51,6 +55,8 @@ python -m lerobot.teleoperate \
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
from lerobot.teleoperators.so101_leader import SO101LeaderConfig, SO101Leader
|
||||
from lerobot.robots.so101_follower import SO101FollowerConfig, SO101Follower
|
||||
@@ -74,10 +80,13 @@ while True:
|
||||
action = teleop_device.get_action()
|
||||
robot.send_action(action)
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
The teleoperate command will automatically:
|
||||
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and teleop device and start teleoperation.
|
||||
|
||||
@@ -104,6 +113,8 @@ python -m lerobot.teleoperate \
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.teleoperators.koch_leader import KochLeaderConfig, KochLeader
|
||||
@@ -134,6 +145,8 @@ while True:
|
||||
action = teleop_device.get_action()
|
||||
robot.send_action(action)
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
@@ -144,11 +157,13 @@ Once you're familiar with teleoperation, you can record your first dataset.
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the CLI by running this command:
|
||||
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then store your Hugging Face repository name in a variable:
|
||||
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
@@ -174,6 +189,8 @@ python -m lerobot.record \
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
||||
@@ -270,40 +287,49 @@ robot.disconnect()
|
||||
teleop.disconnect()
|
||||
dataset.push_to_hub()
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
#### Dataset upload
|
||||
|
||||
Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}`. At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
|
||||
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
|
||||
|
||||
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
|
||||
|
||||
You can also push your local dataset to the Hub manually, running:
|
||||
|
||||
```bash
|
||||
huggingface-cli upload ${HF_USER}/record-test ~/.cache/huggingface/lerobot/{repo-id} --repo-type dataset
|
||||
```
|
||||
|
||||
|
||||
#### Record function
|
||||
|
||||
The `record` function provides a suite of tools for capturing and managing data during robot operation:
|
||||
|
||||
##### 1. Data Storage
|
||||
|
||||
- Data is stored using the `LeRobotDataset` format and is stored on disk during recording.
|
||||
- By default, the dataset is pushed to your Hugging Face page after recording.
|
||||
- To disable uploading, use `--dataset.push_to_hub=False`.
|
||||
|
||||
##### 2. Checkpointing and Resuming
|
||||
|
||||
- Checkpoints are automatically created during recording.
|
||||
- If an issue occurs, you can resume by re-running the same command with `--resume=true`.
|
||||
- To start recording from scratch, **manually delete** the dataset directory.
|
||||
|
||||
##### 3. Recording Parameters
|
||||
|
||||
Set the flow of data recording using command-line arguments:
|
||||
|
||||
- `--dataset.episode_time_s=60`
|
||||
Duration of each data recording episode (default: **60 seconds**).
|
||||
- `--dataset.reset_time_s=60`
|
||||
@@ -312,7 +338,9 @@ Set the flow of data recording using command-line arguments:
|
||||
Total number of episodes to record (default: **50**).
|
||||
|
||||
##### 4. Keyboard Controls During Recording
|
||||
|
||||
Control the data recording flow using keyboard shortcuts:
|
||||
|
||||
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
|
||||
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
|
||||
- Press **Escape (`ESC`)**: Immediately stop the session, encode videos, and upload the dataset.
|
||||
@@ -327,13 +355,14 @@ Avoid adding too much variation too quickly, as it may hinder your results.
|
||||
|
||||
If you want to dive deeper into this important topic, you can check out the [blog post](https://huggingface.co/blog/lerobot-datasets#what-makes-a-good-dataset) we wrote on what makes a good dataset.
|
||||
|
||||
|
||||
#### Troubleshooting:
|
||||
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
|
||||
```bash
|
||||
echo ${HF_USER}/so101_test
|
||||
```
|
||||
@@ -356,6 +385,8 @@ python -m lerobot.replay \
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
import time
|
||||
|
||||
@@ -388,6 +419,8 @@ for idx in range(dataset.num_frames):
|
||||
|
||||
robot.disconnect()
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
@@ -396,6 +429,7 @@ Your robot should replicate movements similar to those you recorded. For example
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](../src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
--dataset.repo_id=${HF_USER}/so101_test \
|
||||
@@ -408,14 +442,16 @@ python -m lerobot.scripts.train \
|
||||
```
|
||||
|
||||
Let's explain the command:
|
||||
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../src/lerobot/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
3. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
4. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
|
||||
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
@@ -427,17 +463,20 @@ If you do not want to push your model to the hub after training use `--policy.pu
|
||||
Additionally you can provide extra `tags` or specify a `license` for your model or make the model repo `private` by adding this: `--policy.private=true --policy.tags=\[ppo,rl\] --policy.license=mit`
|
||||
|
||||
#### Train using Collab
|
||||
|
||||
If your local computer doesn't have a powerful GPU you could utilize Google Collab to train your model by following the [ACT training notebook](./notebooks#training-act).
|
||||
|
||||
#### Upload policy checkpoints
|
||||
|
||||
Once training is done, upload the latest checkpoint with:
|
||||
|
||||
```bash
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test \
|
||||
outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
You can also upload intermediate checkpoints with:
|
||||
|
||||
```bash
|
||||
CKPT=010000
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
|
||||
@@ -467,6 +506,8 @@ python -m lerobot.record \
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="API example">
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
||||
@@ -539,9 +580,12 @@ for episode_idx in range(NUM_EPISODES):
|
||||
robot.disconnect()
|
||||
dataset.push_to_hub()
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
|
||||
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).
|
||||
|
||||
Reference in New Issue
Block a user