Simplify configs (#550)

Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: HUANG TZU-CHUN <137322177+tc-huang@users.noreply.github.com>
This commit is contained in:
Simon Alibert
2025-01-31 13:57:37 +01:00
committed by GitHub
parent 1ee1acf8ad
commit 3c0a209f9f
119 changed files with 5761 additions and 5466 deletions

View File

@@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import pytest
import torch
@@ -21,13 +20,21 @@ from safetensors.torch import load_file
from torchvision.transforms import v2
from torchvision.transforms.v2 import functional as F # noqa: N812
from lerobot.common.datasets.transforms import RandomSubsetApply, SharpnessJitter, get_image_transforms
from lerobot.common.utils.utils import init_hydra_config, seeded_context
from lerobot.scripts.visualize_image_transforms import visualize_transforms
from tests.utils import DEFAULT_CONFIG_PATH, require_x86_64_kernel
ARTIFACT_DIR = Path("tests/data/save_image_transforms_to_safetensors")
DATASET_REPO_ID = "lerobot/aloha_mobile_shrimp"
from lerobot.common.datasets.transforms import (
ImageTransformConfig,
ImageTransforms,
ImageTransformsConfig,
RandomSubsetApply,
SharpnessJitter,
make_transform_from_config,
)
from lerobot.common.utils.utils import seeded_context
from lerobot.scripts.visualize_image_transforms import (
save_all_transforms,
save_each_transform,
)
from tests.scripts.save_image_transforms_to_safetensors import ARTIFACT_DIR
from tests.utils import require_x86_64_kernel
@pytest.fixture
@@ -44,21 +51,38 @@ def single_transforms():
return load_file(ARTIFACT_DIR / "single_transforms.safetensors")
@pytest.fixture
def img_tensor(single_transforms):
return single_transforms["original_frame"]
@pytest.fixture
def default_transforms():
return load_file(ARTIFACT_DIR / "default_transforms.safetensors")
def test_get_image_transforms_no_transform(img_tensor_factory):
def test_get_image_transforms_no_transform_enable_false(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(brightness_min_max=(0.5, 0.5), max_num_transforms=0)
tf_cfg = ImageTransformsConfig() # default is enable=False
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
def test_get_image_transforms_no_transform_max_num_transforms_0(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True, max_num_transforms=0)
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_brightness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(brightness_weight=1.0, brightness_min_max=min_max)
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"brightness": ImageTransformConfig(type="ColorJitter", kwargs={"brightness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(brightness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@@ -66,7 +90,10 @@ def test_get_image_transforms_brightness(img_tensor_factory, min_max):
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_contrast(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(contrast_weight=1.0, contrast_min_max=min_max)
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"contrast": ImageTransformConfig(type="ColorJitter", kwargs={"contrast": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(contrast=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@@ -74,7 +101,11 @@ def test_get_image_transforms_contrast(img_tensor_factory, min_max):
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_saturation(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(saturation_weight=1.0, saturation_min_max=min_max)
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"saturation": ImageTransformConfig(type="ColorJitter", kwargs={"saturation": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(saturation=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@@ -82,7 +113,10 @@ def test_get_image_transforms_saturation(img_tensor_factory, min_max):
@pytest.mark.parametrize("min_max", [(-0.25, -0.25), (0.25, 0.25)])
def test_get_image_transforms_hue(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(hue_weight=1.0, hue_min_max=min_max)
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"hue": ImageTransformConfig(type="ColorJitter", kwargs={"hue": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(hue=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@@ -90,21 +124,49 @@ def test_get_image_transforms_hue(img_tensor_factory, min_max):
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_sharpness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(sharpness_weight=1.0, sharpness_min_max=min_max)
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"sharpness": ImageTransformConfig(type="SharpnessJitter", kwargs={"sharpness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = SharpnessJitter(sharpness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
def test_get_image_transforms_max_num_transforms(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_actual = get_image_transforms(
brightness_min_max=(0.5, 0.5),
contrast_min_max=(0.5, 0.5),
saturation_min_max=(0.5, 0.5),
hue_min_max=(0.5, 0.5),
sharpness_min_max=(0.5, 0.5),
random_order=False,
tf_cfg = ImageTransformsConfig(
enable=True,
max_num_transforms=5,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 0.5)),
@@ -121,68 +183,79 @@ def test_get_image_transforms_max_num_transforms(img_tensor_factory):
def test_get_image_transforms_random_order(img_tensor_factory):
out_imgs = []
img_tensor = img_tensor_factory()
tf = get_image_transforms(
brightness_min_max=(0.5, 0.5),
contrast_min_max=(0.5, 0.5),
saturation_min_max=(0.5, 0.5),
hue_min_max=(0.5, 0.5),
sharpness_min_max=(0.5, 0.5),
tf_cfg = ImageTransformsConfig(
enable=True,
random_order=True,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
with seeded_context(1337):
tf = ImageTransforms(tf_cfg)
with seeded_context(1338):
for _ in range(10):
out_imgs.append(tf(img_tensor))
tmp_img_tensor = img_tensor
for sub_tf in tf.tf.selected_transforms:
tmp_img_tensor = sub_tf(tmp_img_tensor)
torch.testing.assert_close(tmp_img_tensor, out_imgs[-1])
for i in range(1, len(out_imgs)):
with pytest.raises(AssertionError):
torch.testing.assert_close(out_imgs[0], out_imgs[i])
@pytest.mark.skip("TODO after v2 migration / removing hydra")
@pytest.mark.parametrize(
"transform, min_max_values",
"tf_type, tf_name, min_max_values",
[
("brightness", [(0.5, 0.5), (2.0, 2.0)]),
("contrast", [(0.5, 0.5), (2.0, 2.0)]),
("saturation", [(0.5, 0.5), (2.0, 2.0)]),
("hue", [(-0.25, -0.25), (0.25, 0.25)]),
("sharpness", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "brightness", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "contrast", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "saturation", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "hue", [(-0.25, -0.25), (0.25, 0.25)]),
("SharpnessJitter", "sharpness", [(0.5, 0.5), (2.0, 2.0)]),
],
)
def test_backward_compatibility_torchvision(img_tensor_factory, transform, min_max_values, single_transforms):
img_tensor = img_tensor_factory()
def test_backward_compatibility_single_transforms(
img_tensor, tf_type, tf_name, min_max_values, single_transforms
):
for min_max in min_max_values:
kwargs = {
f"{transform}_weight": 1.0,
f"{transform}_min_max": min_max,
}
tf = get_image_transforms(**kwargs)
tf_cfg = ImageTransformConfig(type=tf_type, kwargs={tf_name: min_max})
tf = make_transform_from_config(tf_cfg)
actual = tf(img_tensor)
key = f"{transform}_{min_max[0]}_{min_max[1]}"
key = f"{tf_name}_{min_max[0]}_{min_max[1]}"
expected = single_transforms[key]
torch.testing.assert_close(actual, expected)
@pytest.mark.skip("TODO after v2 migration / removing hydra")
@require_x86_64_kernel
def test_backward_compatibility_default_config(img_tensor_factory, default_transforms):
img_tensor = img_tensor_factory()
cfg = init_hydra_config(DEFAULT_CONFIG_PATH)
cfg_tf = cfg.training.image_transforms
default_tf = get_image_transforms(
brightness_weight=cfg_tf.brightness.weight,
brightness_min_max=cfg_tf.brightness.min_max,
contrast_weight=cfg_tf.contrast.weight,
contrast_min_max=cfg_tf.contrast.min_max,
saturation_weight=cfg_tf.saturation.weight,
saturation_min_max=cfg_tf.saturation.min_max,
hue_weight=cfg_tf.hue.weight,
hue_min_max=cfg_tf.hue.min_max,
sharpness_weight=cfg_tf.sharpness.weight,
sharpness_min_max=cfg_tf.sharpness.min_max,
max_num_transforms=cfg_tf.max_num_transforms,
random_order=cfg_tf.random_order,
)
def test_backward_compatibility_default_config(img_tensor, default_transforms):
cfg = ImageTransformsConfig(enable=True)
default_tf = ImageTransforms(cfg)
with seeded_context(1337):
actual = default_tf(img_tensor)
@@ -260,26 +333,36 @@ def test_sharpness_jitter_invalid_range_max_smaller():
SharpnessJitter((2.0, 0.1))
@pytest.mark.skip("TODO after v2 migration / removing hydra")
@pytest.mark.parametrize(
"repo_id, n_examples",
[
("lerobot/aloha_sim_transfer_cube_human", 3),
],
)
def test_visualize_image_transforms(repo_id, n_examples):
cfg = init_hydra_config(DEFAULT_CONFIG_PATH, overrides=[f"dataset_repo_id={repo_id}"])
output_dir = Path(__file__).parent / "outputs" / "image_transforms"
visualize_transforms(cfg, output_dir=output_dir, n_examples=n_examples)
output_dir = output_dir / repo_id.split("/")[-1]
def test_save_all_transforms(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
# Check if the original frame image exists
assert (output_dir / "original_frame.png").exists(), "Original frame image was not saved."
save_all_transforms(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the combined transforms directory exists and contains the right files
combined_transforms_dir = tmp_path / "all"
assert combined_transforms_dir.exists(), "Combined transforms directory was not created."
assert any(
combined_transforms_dir.iterdir()
), "No transformed images found in combined transforms directory."
for i in range(1, n_examples + 1):
assert (
combined_transforms_dir / f"{i}.png"
).exists(), f"Combined transform image {i}.png was not found."
def test_save_each_transform(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
save_each_transform(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the transformed images exist for each transform type
transforms = ["brightness", "contrast", "saturation", "hue", "sharpness"]
for transform in transforms:
transform_dir = output_dir / transform
transform_dir = tmp_path / transform
assert transform_dir.exists(), f"{transform} directory was not created."
assert any(transform_dir.iterdir()), f"No transformed images found in {transform} directory."
@@ -289,14 +372,3 @@ def test_visualize_image_transforms(repo_id, n_examples):
assert (
transform_dir / file_name
).exists(), f"{file_name} was not found in {transform} directory."
# Check if the combined transforms directory exists and contains the right files
combined_transforms_dir = output_dir / "all"
assert combined_transforms_dir.exists(), "Combined transforms directory was not created."
assert any(
combined_transforms_dir.iterdir()
), "No transformed images found in combined transforms directory."
for i in range(1, n_examples + 1):
assert (
combined_transforms_dir / f"{i}.png"
).exists(), f"Combined transform image {i}.png was not found."