Remove update method from the policy (#99)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
This commit is contained in:
committed by
GitHub
parent
5b4fd8891d
commit
508bd92d03
@@ -11,7 +11,6 @@ TODO(alexander-soare):
|
||||
import copy
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
from collections import deque
|
||||
from typing import Callable
|
||||
|
||||
@@ -19,7 +18,6 @@ import einops
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision
|
||||
from diffusers.optimization import get_scheduler
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from robomimic.models.base_nets import SpatialSoftmax
|
||||
from torch import Tensor, nn
|
||||
@@ -74,26 +72,6 @@ class DiffusionPolicy(nn.Module):
|
||||
self.ema_diffusion = copy.deepcopy(self.diffusion)
|
||||
self.ema = _EMA(cfg, model=self.ema_diffusion)
|
||||
|
||||
# TODO(alexander-soare): Move optimizer out of policy.
|
||||
self.optimizer = torch.optim.Adam(
|
||||
self.diffusion.parameters(), cfg.lr, cfg.adam_betas, cfg.adam_eps, cfg.adam_weight_decay
|
||||
)
|
||||
|
||||
# TODO(alexander-soare): Move LR scheduler out of policy.
|
||||
# TODO(rcadene): modify lr scheduler so that it doesn't depend on epochs but steps
|
||||
self.global_step = 0
|
||||
|
||||
# configure lr scheduler
|
||||
self.lr_scheduler = get_scheduler(
|
||||
cfg.lr_scheduler,
|
||||
optimizer=self.optimizer,
|
||||
num_warmup_steps=cfg.lr_warmup_steps,
|
||||
num_training_steps=lr_scheduler_num_training_steps,
|
||||
# pytorch assumes stepping LRScheduler every epoch
|
||||
# however huggingface diffusers steps it every batch
|
||||
last_epoch=self.global_step - 1,
|
||||
)
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
@@ -155,44 +133,10 @@ class DiffusionPolicy(nn.Module):
|
||||
|
||||
def forward(self, batch: dict[str, Tensor], **_) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
loss = self.diffusion.compute_loss(batch)
|
||||
return {"loss": loss}
|
||||
|
||||
def update(self, batch: dict[str, Tensor], **_) -> dict:
|
||||
"""Run the model in train mode, compute the loss, and do an optimization step."""
|
||||
start_time = time.time()
|
||||
|
||||
self.diffusion.train()
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
batch = self.normalize_targets(batch)
|
||||
|
||||
loss = self.forward(batch)["loss"]
|
||||
loss.backward()
|
||||
|
||||
# TODO(rcadene): self.unnormalize_outputs(out_dict)
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
self.diffusion.parameters(),
|
||||
self.cfg.grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
self.lr_scheduler.step()
|
||||
|
||||
if self.ema is not None:
|
||||
self.ema.step(self.diffusion)
|
||||
|
||||
info = {
|
||||
"loss": loss.item(),
|
||||
"grad_norm": float(grad_norm),
|
||||
"lr": self.lr_scheduler.get_last_lr()[0],
|
||||
"update_s": time.time() - start_time,
|
||||
}
|
||||
|
||||
return info
|
||||
loss = self.diffusion.compute_loss(batch)
|
||||
return {"loss": loss}
|
||||
|
||||
def save(self, fp):
|
||||
torch.save(self.state_dict(), fp)
|
||||
|
||||
Reference in New Issue
Block a user