Added server directory in lerobot/scripts that contains scripts and the protobuf message types to split training into two processes, acting and learning. The actor rollouts the policy and collects interaction data while the learner recieves the data, trains the policy and sends the updated parameters to the actor. The two scripts are ran simultaneously
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
282
lerobot/scripts/server/actor_server.py
Normal file
282
lerobot/scripts/server/actor_server.py
Normal file
@@ -0,0 +1,282 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import functools
|
||||
from pprint import pformat
|
||||
import random
|
||||
from typing import Optional, Sequence, TypedDict, Callable
|
||||
import pickle
|
||||
|
||||
import hydra
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from tqdm import tqdm
|
||||
from deepdiff import DeepDiff
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
# TODO: Remove the import of maniskill
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.envs.factory import make_env, make_maniskill_env
|
||||
from lerobot.common.envs.utils import preprocess_observation, preprocess_maniskill_observation
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
from lerobot.common.policies.utils import get_device_from_parameters
|
||||
from lerobot.common.utils.utils import (
|
||||
format_big_number,
|
||||
get_safe_torch_device,
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
set_global_seed,
|
||||
)
|
||||
# from lerobot.scripts.eval import eval_policy
|
||||
from threading import Thread
|
||||
import queue
|
||||
|
||||
import grpc
|
||||
from lerobot.scripts.server import hilserl_pb2, hilserl_pb2_grpc
|
||||
import io
|
||||
import time
|
||||
import logging
|
||||
from concurrent import futures
|
||||
from threading import Thread
|
||||
from lerobot.scripts.server.buffer import move_state_dict_to_device, move_transition_to_device, Transition
|
||||
|
||||
import faulthandler
|
||||
import signal
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
parameters_queue = queue.Queue(maxsize=1)
|
||||
message_queue = queue.Queue(maxsize=1_000_000)
|
||||
|
||||
class ActorInformation:
|
||||
def __init__(self, transition=None, interaction_message=None):
|
||||
self.transition = transition
|
||||
self.interaction_message = interaction_message
|
||||
|
||||
|
||||
# 1) Implement ActorService so the Learner can send parameters to this Actor.
|
||||
class ActorServiceServicer(hilserl_pb2_grpc.ActorServiceServicer):
|
||||
def StreamTransition(self, request, context):
|
||||
while True:
|
||||
# logging.info(f"[ACTOR] before message.empty()")
|
||||
# logging.info(f"[ACTOR] size transition queue {message_queue.qsize()}")
|
||||
# time.sleep(0.01)
|
||||
# if message_queue.empty():
|
||||
# continue
|
||||
# logging.info(f"[ACTOR] after message.empty()")
|
||||
start = time.time()
|
||||
message = message_queue.get(block=True)
|
||||
# logging.info(f"[ACTOR] Message queue get time {time.time() - start}")
|
||||
|
||||
if message.transition is not None:
|
||||
# transition_to_send_to_learner = move_transition_to_device(message.transition, device="cpu")
|
||||
transition_to_send_to_learner = [move_transition_to_device(T, device="cpu") for T in message.transition]
|
||||
# logging.info(f"[ACTOR] Message queue get time {time.time() - start}")
|
||||
|
||||
# Serialize it
|
||||
buf = io.BytesIO()
|
||||
torch.save(transition_to_send_to_learner, buf)
|
||||
transition_bytes = buf.getvalue()
|
||||
|
||||
transition_message = hilserl_pb2.Transition(
|
||||
transition_bytes=transition_bytes
|
||||
)
|
||||
|
||||
response = hilserl_pb2.ActorInformation(
|
||||
transition=transition_message
|
||||
)
|
||||
logging.info(f"[ACTOR] time to yield transition response {time.time() - start}")
|
||||
logging.info(f"[ACTOR] size transition queue {message_queue.qsize()}")
|
||||
|
||||
elif message.interaction_message is not None:
|
||||
# Serialize it and send it to the Learner's server
|
||||
content = hilserl_pb2.InteractionMessage(
|
||||
interaction_message_bytes=pickle.dumps(message.interaction_message)
|
||||
)
|
||||
response = hilserl_pb2.ActorInformation(
|
||||
interaction_message=content
|
||||
)
|
||||
|
||||
# logging.info(f"[ACTOR] yield response before")
|
||||
yield response
|
||||
# logging.info(f"[ACTOR] response yielded after")
|
||||
|
||||
def SendParameters(self, request, context):
|
||||
"""
|
||||
Learner calls this with updated Parameters -> Actor
|
||||
"""
|
||||
# logging.info("[ACTOR] Received parameters from Learner.")
|
||||
buffer = io.BytesIO(request.parameter_bytes)
|
||||
params = torch.load(buffer)
|
||||
parameters_queue.put(params)
|
||||
return hilserl_pb2.Empty()
|
||||
|
||||
|
||||
def serve_actor_service(port=50052):
|
||||
"""
|
||||
Runs a gRPC server so that the Learner can push parameters to the Actor.
|
||||
"""
|
||||
server = grpc.server(futures.ThreadPoolExecutor(max_workers=20),
|
||||
options=[('grpc.max_send_message_length', -1),
|
||||
('grpc.max_receive_message_length', -1)])
|
||||
hilserl_pb2_grpc.add_ActorServiceServicer_to_server(
|
||||
ActorServiceServicer(), server
|
||||
)
|
||||
server.add_insecure_port(f'[::]:{port}')
|
||||
server.start()
|
||||
logging.info(f"[ACTOR] gRPC server listening on port {port}")
|
||||
server.wait_for_termination()
|
||||
|
||||
def act_with_policy(cfg: DictConfig,
|
||||
out_dir: str | None = None,
|
||||
job_name: str | None = None):
|
||||
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
if job_name is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
logging.info("make_env online")
|
||||
|
||||
# online_env = make_env(cfg, n_envs=1)
|
||||
# TODO: Remove the import of maniskill and unifiy with make env
|
||||
online_env = make_maniskill_env(cfg, n_envs=1)
|
||||
if cfg.training.eval_freq > 0:
|
||||
logging.info("make_env eval")
|
||||
# eval_env = make_env(cfg, n_envs=1)
|
||||
# TODO: Remove the import of maniskill and unifiy with make env
|
||||
eval_env = make_maniskill_env(cfg, n_envs=1)
|
||||
|
||||
set_global_seed(cfg.seed)
|
||||
device = get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
logging.info("make_policy")
|
||||
|
||||
|
||||
### Instantiate the policy in both the actor and learner processes
|
||||
### To avoid sending a SACPolicy object through the port, we create a policy intance
|
||||
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
|
||||
# TODO: At some point we should just need make sac policy
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online traning, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
# TODO: Handle resume training
|
||||
pretrained_policy_name_or_path=None,
|
||||
device=device,
|
||||
)
|
||||
assert isinstance(policy, nn.Module)
|
||||
|
||||
# HACK for maniskill
|
||||
obs, info = online_env.reset()
|
||||
|
||||
# obs = preprocess_observation(obs)
|
||||
obs = preprocess_maniskill_observation(obs)
|
||||
obs = {key: obs[key].to(device, non_blocking=True) for key in obs}
|
||||
### ACTOR ==================
|
||||
# NOTE: For the moment we will solely handle the case of a single environment
|
||||
sum_reward_episode = 0
|
||||
list_transition_to_send_to_learner = []
|
||||
|
||||
for interaction_step in range(cfg.training.online_steps):
|
||||
# NOTE: At some point we should use a wrapper to handle the observation
|
||||
|
||||
# start = time.time()
|
||||
if interaction_step >= cfg.training.online_step_before_learning:
|
||||
action = policy.select_action(batch=obs)
|
||||
next_obs, reward, done, truncated, info = online_env.step(action.cpu().numpy())
|
||||
else:
|
||||
action = online_env.action_space.sample()
|
||||
next_obs, reward, done, truncated, info = online_env.step(action)
|
||||
# HACK
|
||||
action = torch.tensor(action, dtype=torch.float32).to(device, non_blocking=True)
|
||||
|
||||
# logging.info(f"[ACTOR] Time for env step {time.time() - start}")
|
||||
|
||||
# HACK: For maniskill
|
||||
# next_obs = preprocess_observation(next_obs)
|
||||
next_obs = preprocess_maniskill_observation(next_obs)
|
||||
next_obs = {key: next_obs[key].to(device, non_blocking=True) for key in obs}
|
||||
sum_reward_episode += float(reward[0])
|
||||
# Because we are using a single environment
|
||||
# we can safely assume that the episode is done
|
||||
if done[0].item() or truncated[0].item():
|
||||
# TODO: Handle logging for episode information
|
||||
logging.info(f"[ACTOR] Global step {interaction_step}: Episode reward: {sum_reward_episode}")
|
||||
|
||||
if not parameters_queue.empty():
|
||||
logging.info("[ACTOR] Load new parameters from Learner.")
|
||||
# Load new parameters from Learner
|
||||
state_dict = parameters_queue.get()
|
||||
state_dict = move_state_dict_to_device(state_dict, device=device)
|
||||
policy.actor.load_state_dict(state_dict)
|
||||
|
||||
if len(list_transition_to_send_to_learner) > 0:
|
||||
logging.info(f"[ACTOR] Sending {len(list_transition_to_send_to_learner)} transitions to Learner.")
|
||||
message_queue.put(ActorInformation(transition=list_transition_to_send_to_learner))
|
||||
list_transition_to_send_to_learner = []
|
||||
|
||||
# Send episodic reward to the learner
|
||||
message_queue.put(ActorInformation(interaction_message={"episodic_reward": sum_reward_episode,"interaction_step": interaction_step}))
|
||||
sum_reward_episode = 0.0
|
||||
|
||||
# ============================
|
||||
# Prepare transition to send
|
||||
# ============================
|
||||
# Label the reward
|
||||
# if config.label_reward_on_actor:
|
||||
# reward = reward_classifier(obs)
|
||||
|
||||
list_transition_to_send_to_learner.append(Transition(
|
||||
# transition_to_send_to_learner = Transition(
|
||||
state=obs,
|
||||
action=action,
|
||||
reward=reward,
|
||||
next_state=next_obs,
|
||||
done=done,
|
||||
complementary_info=None,
|
||||
)
|
||||
)
|
||||
# message_queue.put(ActorInformation(transition=transition_to_send_to_learner))
|
||||
|
||||
# assign obs to the next obs and continue the rollout
|
||||
obs = next_obs
|
||||
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../../configs")
|
||||
def actor_cli(cfg: dict):
|
||||
server_thread = Thread(target=serve_actor_service, args=(50051,), daemon=True)
|
||||
server_thread.start()
|
||||
policy_thread = Thread(target=act_with_policy,
|
||||
daemon=True,
|
||||
args=(cfg,hydra.core.hydra_config.HydraConfig.get().run.dir, hydra.core.hydra_config.HydraConfig.get().job.name))
|
||||
policy_thread.start()
|
||||
policy_thread.join()
|
||||
server_thread.join()
|
||||
|
||||
if __name__ == "__main__":
|
||||
with open("traceback.log", "w") as f:
|
||||
faulthandler.register(signal.SIGUSR1, file=f)
|
||||
|
||||
actor_cli()
|
||||
Reference in New Issue
Block a user