feat(processors): use pipelines across the codebase (#1452)
* Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * Feat/pipeline add feature contract (#1637) * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * docs(pipeline): Clarify transition handling and hook behavior - Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats. - Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change. - Enhanced test assertions to verify the structure of results and the correctness of processing steps. * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * refactor(pipeline): Remove model card generation and streamline processor methods - Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template. - Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters. - Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability. * refactor(observation): Streamline observation preprocessing and remove unused processor methods - Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting. - Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow. - Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script. * refactor(pipeline): Rename parameters for clarity and enhance save/load functionality - Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path. - Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names. - Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability. * refactor(pipeline): minor improvements (#1684) * chore(pipeline): remove unused features + device torch + envtransition keys * refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor * refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code * test(pipeline): fix broken test after refactors * docs(pipeline): update docstrings VanillaObservationProcessor * chore(pipeline): move None check to base pipeline classes * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * refactor(processors): Standardize processor naming conventions - Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format. - Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme. - Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability. * refactor(factory): Update processor configuration and type hints - Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety. - Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility. - Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations. - Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling. * refactor(factory, pi0fast): Update processor function names and parameters - Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency. - Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions. * fix(train.py) push postprocessor with preprocessor - Add preprocesser policy overrides for device and rename_map - Add rename_map to DatasetRecordConfig (record.py) * refactor(device_processor): Update device handling and improve type hints - Changed device attribute type from torch.device to str for better clarity. - Introduced a private _device attribute to store the actual torch.device instance. - Updated tests to conditionally check for CUDA availability, ensuring compatibility across different environments. - Refactored device-related assertions in tests to use a consistent approach for device type verification. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * test(tokenizer_processor): Add require_package decorator for transformers - Introduced @require_package("transformers") decorator in multiple test functions to ensure the transformers package is available before running tests. - This change enhances test reliability by preventing failures due to missing dependencies. * refactor(migrate_policy_normalization): Enhance preprocessor and postprocessor structure - Introduced RenameProcessor in the preprocessor to handle renaming features. - Combined input and output features in a single NormalizerProcessor for improved efficiency. - Updated RobotProcessor initialization to clarify step naming for preprocessor and postprocessor. - Added DeviceProcessor to both preprocessor and postprocessor for better device management. * Integrate pipeline and add phone teleop (#1681) * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * fix(ci): temporary fix on dataset deps version * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * refactor(train): Update memory pinning logic for mps compatibility * feat: initial commit phone teleop * ugly delta control * use quaternion * Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * Add debug + calib * cleanup * Add pipeline * fix int * Add record example * nit * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * cleaned up steps and integrated pipeline with feature_contract * refactor steps and robot to pipeline * cleanup pipeline * cleanup code further * make it run * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * Do some todos and cleanup * change feature_contract to dataset_features * use one method for conversion pipeline output to add_frame dict and use base processors where possible * Add back in and use record_loop * update todo * rename to_dataset_frame * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix reference frame * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * update data visualization * update teleop example * fix record bugs * Add replay * Not code * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * Add eval script * fix `q_curr` in InverseKinematicsEEToJoints to the IK solution * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * refactor(processors): Standardize processor naming conventions - Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format. - Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme. - Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability. * refactor(factory): Update processor configuration and type hints - Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety. - Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility. - Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations. - Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling. * Fix eval and android gripper * add some tests * refactor(factory, pi0fast): Update processor function names and parameters - Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency. - Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions. * fix(train.py) push postprocessor with preprocessor - Add preprocesser policy overrides for device and rename_map - Add rename_map to DatasetRecordConfig (record.py) * Cleanup pr * fix more git diff pr issues * add path as type in save_pretrained * small nit * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename test file * fix: make dataset_features/feature_contract is optional * fix tests * Encorperate pr feedback * clean up record.py * add ascii art, fix normal record * remove merge issues * fix merge * remove features * Add feedback PR * fix last 4 tests * remove features check * rename to transform_features * add transform_features * fix lekiwi eval and update eval api example --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> * refactor(TokenizerProcessor): improve dependency handling and observation management - Updated TokenizerProcessor to conditionally import AutoTokenizer based on the availability of the transformers library, enhancing flexibility. - Modified tokenizer attribute type to Any to accommodate scenarios where transformers may not be installed. - Improved observation handling by using a more concise approach to manage the transition dictionary, ensuring compatibility with existing data structures. - Added error handling for missing transformers library, providing clear guidance for users on installation requirements. * feat(dependencies): Add scipy as a required dependency - Included `scipy>=1.15.2` in the project dependencies to enhance functionality and support for scientific computing tasks. * feat(policies): convert save_policy_to_safetensors with pipeline * refactor(normalization): remove Normalize and Unnormalize classes - Deleted the Normalize and Unnormalize classes from the normalization module to streamline the codebase. - Updated tests to ensure compatibility with the removal of these classes, focusing on the new NormalizerProcessor and UnnormalizerProcessor implementations. - Enhanced the handling of normalization statistics and improved overall code clarity. * refactor(factory): streamline processor loading by removing unused comments - Removed commented-out code related to loading pretrained processors in the make_processor function. - This change enhances code clarity and maintains focus on the current implementation. * feat(DeviceProcessor): Enhance tensor processing with device detection and float dtype conversion - Improved the _process_tensor method to preserve GPU placement for tensors already on a GPU, facilitating multi-GPU training scenarios. - Introduced a new _detect_device method in TokenizerProcessor to ensure tokenized tensors match the device of existing tensors in transitions. - Added comprehensive unit tests to validate the functionality of device detection and float dtype conversion across various scenarios. * feat(tests): Add comprehensive tests for various policy processors - Introduced new test files for ACT, Classifier, Diffusion, PI0, SAC, SmolVLA, TDMPC, and VQBeT policy processors. - Each test file includes unit tests to validate functionality, including handling of batch sizes, device management, and data type conversions. - Enhanced test coverage to ensure robustness and reliability of processor implementations across different scenarios. * refactor(train): Remove unnecessary tensor device handling in training loop * Refactor`gym_manipulator.py` using the universal pipeline (#1650) * Migrate gym_manipulator to use the pipeline Added get_teleop_events function to capture relevant events from teleop devices unrelated to actions * Added the capability to record a dataset * Added the replay functionality with the pipeline * Refactored `actor.py` to use the pipeline * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * RL works at this commit - fixed actor.py and bugs in gym_manipulator * change folder structure to reduce the size of gym_manip * Refactored hilserl config * Remove dataset and mode from HilSerlEnvConfig to a GymManipulatorConfig to reduce verbose of configs during training * format docs * removed get_teleop_events from abc * Refactor environment configuration and processing pipeline for GymHIL support. Removed device attribute from HILSerlRobotEnvConfig, added DummyTeleopDevice for simulation, and updated processor creation to accommodate GymHIL environments. * Improved typing for HILRobotEnv config and GymManipulator config * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Migrated `gym_manipulator` to use a more modular structure similar to phone teleop * Refactor gripper handling and transition processing in HIL and robot kinematic processors - Updated gripper position handling to use a consistent key format across processors - Improved the EEReferenceAndDelta class to handle reference joint positions. - Added support for discrete gripper actions in the GripperVelocityToJoint processor. - Refactored the gym manipulator to improve modularity and clarity in processing steps. * Added delta_action_processor mapping wrapper * Added missing file delta_action_processor and improved imports in `gym_manipulator` * nit * Added missing file joint_observation_processor * Enhance processing architecture with new teleoperation processors - Introduced `AddTeleopActionAsComplimentaryData` and `AddTeleopEventsAsInfo` for integrating teleoperator actions and events into transitions. - Added `Torch2NumpyActionProcessor` and `Numpy2TorchActionProcessor` for seamless conversion between PyTorch tensors and NumPy arrays. - Updated `__init__.py` to include new processors in module exports, improving modularity and clarity in the processing pipeline. - GymHIL is now fully supported with HIL using the pipeline * Refactor configuration structure for gym_hil integration - Renamed sections for better readability, such as changing "Gym Wrappers Configuration" to "Processor Configuration." - Enhanced documentation with clear examples for dataset collection and policy evaluation configurations. * Enhance reset configuration and teleoperation event handling - Added `terminate_on_success` parameter to `ResetConfig` and `InterventionActionProcessor` for controlling episode termination behavior upon success detection. - Updated documentation to clarify the impact of `terminate_on_success` on data collection for reward classifier training. - Refactored teleoperation event handling to use `TeleopEvents` constants for improved readability and maintainability across various modules. * fix(keyboard teleop), delta action keys * Added transform features and feature contract * Added transform features for image crop * Enum for TeleopEvents * Update tranform_features delta action proc --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Remove HILEnvConfig references * chore(processor): Add default names for preprocessor and postprocessor in constants - Introduced `PREPROCESSOR_DEFAULT_NAME` and `POSTPROCESSOR_DEFAULT_NAME` constants for consistent naming across various processor implementations. - Updated processor creation in multiple policy files to utilize these constants, enhancing code readability and maintainability. - Modified the training script to load and save the preprocessor and postprocessor using the new constants. * feat(processor): multiple improvements to the pipeline porting (#1749) * [Port codebase pipeline] General fixes for RL and scripts (#1748) * Refactor dataset configuration in documentation and codebase - Updated dataset configuration keys from `dataset_root` to `root` and `num_episodes` to `num_episodes_to_record` for consistency. - Adjusted replay episode handling by renaming `episode` to `replay_episode`. - Enhanced documentation - added specific processor to transform from policy actions to delta actions * Added Robot action to tensor processor Added new processor script for dealing with gym specific action processing * removed RobotAction2Tensor processor; imrpoved choosing observations in actor * nit in delta action * added missing reset functions to kinematics * Adapt teleoperate and replay to pipeline similar to record * refactor(processors): move to inheritance (#1750) * fix(teleoperator): improvements phone implementation (#1752) * fix(teleoperator): protect shared state in phone implementation * refactor(teleop): separate classes in phone * fix: solve breaking changes (#1753) * refactor(policies): multiple improvements (#1754) * refactor(processor): simpler logic in device processor (#1755) * refactor(processor): euclidean distance in delta action processor (#1757) * refactor(processor): improvements to joint observations processor migration (#1758) * refactor(processor): improvements to tokenizer migration (#1759) * refactor(processor): improvements to tokenizer migration * fix(tests): tokenizer tests regression from #1750 * fix(processors): fix float comparison and config in hil processors (#1760) * chore(teleop): remove unnecessary callbacks in KeyboardEndEffectorTeleop (#1761) * refactor(processor): improvements normalize pipeline migration (#1756) * refactor(processor): several improvements normalize processor step * refactor(processor): more improvements normalize processor * refactor(processor): more changes to normalizer * refactor(processor): take a different approach to DRY * refactor(processor): final design * chore(record): revert comment and continue deleted (#1764) * refactor(examples): pipeline phone examples (#1769) * refactor(examples): phone teleop + teleop script * refactor(examples): phone replay + replay * chore(examples): rename phone example files & folders * feat(processor): fix improvements to the pipeline porting (#1796) * refactor(processor): enhance tensor device handling in normalization process (#1795) * refactor(tests): remove unsupported device detection test for complementary data (#1797) * chore(tests): update ToBatchProcessor test (#1798) * refactor(tests): remove in-place mutation tests for actions and complementary data in batch processor * test(tests): add tests for action and task processing in batch processor * add names for android and ios phone (#1799) * use _tensor_stats in normalize processor (#1800) * fix(normalize_processor): correct device reference for tensor epsilon handling (#1801) * add point 5 add missing feature contracts (#1806) * Fix PR comments 1452 (#1807) * use key to determine image * Address rest of PR comments * use PolicyFeatures in transform_features --------- Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> * refactor(constants, processor): standardize action and observation keys across multiple files (#1808) - Added new constants for truncated and done states in constants.py. - Updated references to action and observation keys in pipeline_features.py, converters.py, hil_processor.py, tokenizer_processor.py, and robot_kinematic_processor.py to use the new constants for improved readability and maintainability. * refactor(processor): improve processor pipeline typing with generic type (#1810) * refactor(processor): introduce generic type for to_output - Always return `TOutput` - Remove `_prepare_transition`, so `__call__` now always returns `TOutput` - Update tests accordingly - This refactor paves the way for adding settings for `to_transition` and `to_output` in `make_processor` and the post-processor * refactor(processor): consolidate ProcessorKwargs usage across policies - Removed the ProcessorTypes module and integrated ProcessorKwargs directly into the processor pipeline. - Updated multiple policy files to utilize the new ProcessorKwargs structure for preprocessor and postprocessor arguments. - Simplified the handling of processor kwargs by initializing them to empty dictionaries when not provided. * refactor(converters): implement unified tensor conversion function (#1830) - Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors. - Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability. - Updated tests to cover new functionality and ensure correct tensor conversion behavior. * Revert "refactor(converters): implement unified tensor conversion function (#…" (#1840) This reverts commit a837685bf870919fc07ada287a71711cebabb1ea. * refactor(converters): implement unified tensor conversion function (#1841) - Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors. - Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability. - Updated tests to cover new functionality and ensure correct tensor conversion behavior. Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> * refactor(converters): gather converters and refactor the logic (#1833) * refactor(converters): move batch transition functions to converters module - Moved `_default_batch_to_transition` and `_default_transition_to_batch` functions from `pipeline.py` to `converters.py` for better organization and separation of concerns. - Updated references in `RobotProcessor` to use the new location of these functions. - Added tests to ensure correct functionality of the transition functions, including handling of index and task_index fields. - Removed redundant tests from `pipeline.py` to streamline the test suite. * refactor(processor): reorganize EnvTransition and TransitionKey definitions - Moved `EnvTransition` and `TransitionKey` classes from `pipeline.py` to a new `core.py` module for better structure and maintainability. - Updated import statements across relevant modules to reflect the new location of these definitions, ensuring consistent access throughout the codebase. * refactor(converters): rename and update dataset frame conversion functions - Replaced `to_dataset_frame` with `transition_to_dataset_frame` for clarity and consistency in naming. - Updated references in `record.py`, `pipeline.py`, and tests to use the new function name. - Introduced `merge_transitions` to streamline the merging of transitions, enhancing readability and maintainability. - Adjusted related tests to ensure correct functionality with the new naming conventions. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(processor): solve conflict artefacts * refactor(converters): remove unused identity function and update type hints for merge_transitions * refactor(processor): remove unused identity import and clean up gym_manipulator.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processors): add transform_features method to various processors (#1843) * refactor(processors): update transition handling in RewardClassifierProcessor and InverseKinematicsEEToJoints (#1844) * refactor(processors): unify import statements by consolidating pipeline imports into the main processor module (#1845) * refactor(processors): add extended api for specialized pipelines (#1848) * refactor(processors): enhance transform_features method across multiple processors (#1849) * refactor(processors): enhance transform_features method across multiple processors - Updated the transform_features method in various processors to utilize a copy of the features dictionary, ensuring immutability of the original features. - Added handling for new feature keys and removed obsolete ones in the MapTensorToDeltaActionDict, JointVelocityProcessor, and others. - Improved readability and maintainability by following consistent patterns in feature transformation. * refactor(processors): standardize action and observation keys in delta_action_processor and joint_observations_processor - Updated action and observation keys to use constants for improved readability and maintainability. - Refactored the transform_features method in multiple processors to ensure consistent handling of feature keys. - Enhanced error handling by raising exceptions for missing required components in action and observation processing. - Removed obsolete code and improved overall structure for better clarity. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(processors): remove unused import in joint_observations_processor * refactor(processors): simplify transform_features method in delta_action_processor * refactor(processors): streamline transform_features method in ImageCropResizeProcessor * refactor(processors): improve error handling and streamline transform_features method in phone_processor - Raised a ValueError for missing position and rotation in action to enhance error handling. * refactor(processors): enhance error handling in JointVelocityProcessor - Added a ValueError raise for missing current joint positions in the observation method to improve error handling and ensure the integrity of the transform_features method. * refactor(processors): simplify transform_features method in robot kinematic processors * refactor(processors): standardize action keys in phone_processor * fix(processor): RKP feature obs -> act --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> * chore(processor): rename RobotProcessor -> DataProcessorPipeline (#1850) * chore(processor): rename specialized processor -> XYZProcessorStep (#1852) * chore(processor): rename converters function names (#1853) * chore(processor): rename to_transition_teleop_action -> action_to_transition * chore(processor): rename to_transition_robot_observation -> observation_to_transition * chore(processor): rename to_output_robot_action -> transition_to_robot_action * chore(processor): add Step suffix to all processors (#1854) * refactor(processor): rename MapDeltaActionToRobotAction and MapTensorToDeltaActionDict for consistency * refactor(processor): rename DeviceProcessor to DeviceProcessorStep for consistency across modules * refactor(processor): rename Torch2NumpyActionProcessor to Torch2NumpyActionProcessorStep for consistency * refactor(processor): rename Numpy2TorchActionProcessor to Numpy2TorchActionProcessorStep for consistency * refactor(processor): rename AddTeleopActionAsComplimentaryData to AddTeleopActionAsComplimentaryDataStep for consistency * refactor(processor): rename ImageCropResizeProcessor and AddTeleopEventsAsInfo for consistency * refactor(processor): rename TimeLimitProcessor to TimeLimitProcessorStep for consistency * refactor(processor): rename GripperPenaltyProcessor to GripperPenaltyProcessorStep for consistency * refactor(processor): rename InterventionActionProcessor to InterventionActionProcessorStep for consistency * refactor(processor): rename RewardClassifierProcessor to RewardClassifierProcessorStep for consistency * refactor(processor): rename JointVelocityProcessor to JointVelocityProcessorStep for consistency * refactor(processor): rename MotorCurrentProcessor to MotorCurrentProcessorStep for consistency * refactor(processor): rename NormalizerProcessor and UnnormalizerProcessor to NormalizerProcessorStep and UnnormalizerProcessorStep for consistency * refactor(processor): rename VanillaObservationProcessor to VanillaObservationProcessorStep for consistency * refactor(processor): rename RenameProcessor to RenameProcessorStep for consistency * refactor(processor): rename TokenizerProcessor to TokenizerProcessorStep for consistency * refactor(processor): rename ToBatchProcessor to AddBatchDimensionProcessorStep for consistency * refactor(processor): update config file name in test for RenameProcessorStep consistency * refactor(processor): rename internal tokenizer variable for clarity (#1855) - Changed the internal tokenizer variable name from `_tokenizer` to `input_tokenizer` for improved readability and consistency. - Updated references throughout the class to reflect the new variable name. * chore(processor): rename merge_features -> combine_feature_dicts (#1856) * refactor(processor): rename internal device variable for clarity (#1857) - Changed the internal device variable from `_device` to `tensor_device` for improved readability and consistency. - Updated references throughout the class to reflect the new variable name. * chore(processor): rename teleop_phone variable names (#1858) * chore(processor): add type alias RobotProcessorPipeline and PolicyProcessorPipeline (#1859) * feat(processor): introduce PolicyProcessorPipeline and RobotProcessorPipeline as type aliases for DataProcessorPipeline - Added PolicyProcessorPipeline and RobotProcessorPipeline type aliases to enhance clarity and maintainability in the processor module. - Updated the __all__ list to include the new pipelines for better module export consistency. * refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline across multiple modules - Updated all instances of DataProcessorPipeline to PolicyProcessorPipeline in various processor files for consistency and clarity. - Adjusted function signatures to reflect the new pipeline type, enhancing maintainability and readability. * refactor(processor): update hotswap_stats function to use PolicyProcessorPipeline - Changed the parameter name from robot_processor to policy_processor for clarity. - Ensured consistency with recent updates to the processor module by reflecting the new pipeline type in the function signature. * refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline in migrate_policy_normalization.py - Updated the preprocessor and postprocessor to use PolicyProcessorPipeline for consistency with recent changes in the processor module. - Enhanced clarity and maintainability by aligning with the new pipeline structure. * refactor(processor): update hotswap_stats to use PolicyProcessorPipeline - Changed the parameter type in hotswap_stats from DataProcessorPipeline to PolicyProcessorPipeline for consistency with recent updates. - Enhanced clarity by updating the function documentation to reflect the new pipeline type. * refactor(processor): replace DataProcessorPipeline with RobotProcessorPipeline across multiple files - Updated instances of DataProcessorPipeline to RobotProcessorPipeline in evaluate.py, record.py, replay.py, teleoperate.py, and other relevant files for consistency and clarity. - Adjusted function signatures and variable types to reflect the new pipeline structure, enhancing maintainability and readability. * refactor(processor): enforce config_filename requirement for HF Hub loading (#1860) - Updated the DataProcessorPipeline to require a specific config_filename when loading from Hugging Face Hub, enhancing clarity and preventing errors. - Simplified local path checks and improved error handling for invalid paths. - Adjusted tests to reflect the new requirement and ensure proper error handling for various loading scenarios. * feat(record): add transition features to dataset and handle scalar vs array formatting in converters (#1861) - Introduced new transition features (`next.reward`, `next.done`, `next.truncated`) in the dataset during recording. - Updated the `transition_to_dataset_frame` function to handle scalar values correctly, ensuring compatibility with expected array formats for reward, done, and truncated features. * refactor(pipeline): enforce ProcessorStep inheritance for pipeline steps (#1862) - Updated the DataProcessorPipeline to require that all steps inherit from ProcessorStep, enhancing type safety and clarity. - Adjusted tests to utilize a MockTokenizerProcessorStep that adheres to the ProcessorStep interface, ensuring consistent behavior across tests. - Refactored various mock step classes in tests to inherit from ProcessorStep for improved consistency and maintainability. * refactor(dependencies): remove scipy dependency and introduce custom rotation utilities (#1863) - Removed the scipy dependency from the project to streamline requirements. - Added a new `rotation.py` module containing a custom `Rotation` class that replicates essential functionalities of `scipy.spatial.transform.Rotation`, allowing for rotation vector, matrix, and quaternion conversions without external dependencies. - Updated the `robot_kinematic_processor.py` to utilize the new custom rotation utilities. * feat(teleoperation): introduce HasTeleopEvents protocol and enhance teleop event handling (#1866) - Added the HasTeleopEvents protocol to define a standard for teleoperators that provide control events. - Implemented a runtime check to ensure teleoperators implement the get_teleop_events() method. - Updated AddTeleopEventsAsInfoStep to utilize the new protocol, enhancing compatibility with custom teleoperators. - Improved documentation for clarity on teleoperation event extraction and compatibility with built-in teleoperators. * fix(deps): use in-house rotation utils over scipy throughout the codebase * refactor(constants): rename preprocessor and postprocessor constants for clarity (#1868) - Updated constant names from PREPROCESSOR_DEFAULT_NAME and POSTPROCESSOR_DEFAULT_NAME to POLICY_PREPROCESSOR_DEFAULT_NAME and POLICY_POSTPROCESSOR_DEFAULT_NAME for better context. - Adjusted references across multiple files to use the new constant names, ensuring consistency in the codebase. * refactor(tests): update processor test assertions to reflect new preprocessor and postprocessor names (#1869) - Changed assertions in multiple processor test files to verify the updated names from "robot_preprocessor" and "robot_postprocessor" to "policy_preprocessor" and "policy_postprocessor" for consistency with recent refactoring. * refactor(utils): simplify log_rerun_data function (#1864) * refactor(logging): enhance log_rerun_data to handle observation and action separately - Updated the `log_rerun_data` function to accept and log observation and action data more clearly, improving readability and maintainability. - Refactored the `record_loop` and `teleop_loop` functions to extract and pass observation and action data to `log_rerun_data`, ensuring consistent logging format. * refactor(tests): update test_log_rerun_data to align with log_rerun_data changes - Modified test cases in `test_visualization_utils.py` to extract and pass observation and action data separately to `log_rerun_data`, improving clarity and consistency with recent function updates. - Ensured that the tests reflect the new structure of `log_rerun_data` for better maintainability. * refactor(processors): simplify calls to log_rerun + replace lambda functions with identity_transition --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * fix(processor): recover type inference for use of processors (#1873) * refactor(processors): Improve Normalization Processor Performance and Device/Dtype Adaptability (#1880) * refactor(processors): reorder processor steps for consistency across implementations - Updated the order of processor steps in multiple files to ensure consistency, placing AddBatchDimensionProcessorStep and DeviceProcessorStep before NormalizerProcessorStep. - Adjusted related test assertions to reflect the new order of steps in the preprocessor, enhancing clarity and maintainability. * refactor(normalization): remove dtype specification in tensor conversion for adaptation logic - Updated tensor conversion in the _NormalizationMixin class to remove explicit dtype specification, allowing for automatic adaptation of tensor types. - Adjusted related tests to ensure proper functionality with the new tensor conversion logic, verifying that normalizers adapt correctly to input types. * chore(docs): update doctrines pipeline files (#1872) * docs(processor): update docstrings batch_processor * docs(processor): update docstrings device_processor * docs(processor): update docstrings tokenizer_processor * update docstrings processor_act * update docstrings for pipeline_features * update docstrings for utils * update docstring for processor_diffusion * update docstrings factory * add docstrings to pi0 processor * add docstring to pi0fast processor * add docstring classifier processor * add docstring to sac processor * add docstring smolvla processor * add docstring to tdmpc processor * add docstring to vqbet processor * add docstrings to converters * add docstrings for delta_action_processor * add docstring to gym action processor * update hil processor * add docstring to joint obs processor * add docstring to migrate_normalize_processor * update docstrings normalize processor * update docstring normalize processor * update docstrings observation processor * update docstrings rename_processor * add docstrings robot_kinematic_processor * cleanup rl comments * add docstring to train.py * add docstring to teleoperate.py * add docstrings to phone_processor.py * add docstrings to teleop_phone.py * add docstrings to control_utils.py * add docstrings to visualization_utils.py --------- Co-authored-by: Pepijn <pepijn@huggingface.co> * refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions (#1900) * refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions - Updated the `rollout` and `eval_policy` functions to accept preprocessor and postprocessor parameters, enhancing the flexibility of the evaluation pipeline. - Adjusted the implementation to apply preprocessing and postprocessing steps during policy evaluation, improving the overall data handling and processing flow. * refactor(eval): remove redundant observation device conversion in rollout function - Eliminated unnecessary device conversion for the observation dictionary within the `rollout` function, streamlining the code and enhancing readability. - This change simplifies the observation handling process, aligning with the preference for clearer solutions. * debug * refactor(utils): enhance task handling in add_envs_task function - Improved the `add_envs_task` function to validate the output of `task_description` and `task` calls, ensuring they return lists of strings. - Removed the use of `else` statement for environments without language instructions, simplifying the logic and enhancing readability. - Streamlined the observation dictionary handling by ensuring consistent data types for task attributes. * refactor(converters): rename _from_tensor to from_tensor_to_numpy for clarity (#1902) - Updated the function name from _from_tensor to from_tensor_to_numpy to better reflect its purpose of converting PyTorch tensors to numpy arrays or scalars. - Adjusted all references to the renamed function throughout the codebase to maintain consistency. - Enhanced the _NormalizationMixin class to reconstruct the stats dictionary from tensor stats using the new function, ensuring compatibility after loading state dicts. - Added tests to verify the correct reconstruction of stats and functionality of methods dependent on self.stats after loading. * refactor(pipeline): feature contract now categorizes between OBS or Action (#1867) * refactor(processor): signature of transform_features * refactor(processor): remove prefixes + processor respect new transform_features signature + update test accordingly * refactor(processor): rename now is only for visual * refactor(processor): update normalize processor * refactor(processor): update vanilla processor features * refactor(processor): feature contract now uses its own enum * chore(processor): rename renameprocessor * chore(processor): minor changes * refactor(processor): add create & change aggregate * refactor(processor): update aggregate * refactor(processor): simplify to functions, fix features contracts and rename function * test(processor): remove to converter tests as now they are very simple * chore(docs): recover docs joint observations processor * fix(processor): update RKP * fix(tests): recv diff test_pipeline * chore(tests): add docs to test * chore(processor): leave obs language constant untouched * fix(processor): correct new shape of feature in crop image processor * refactor(eval): specify type parameters for preprocessor and postprocessor in eval_policy function (#1904) * chore(processor): remove action prefixes (#1905) * test(processor): all processors use now the same create_transition (#1906) * test(processor): all processors use now the same create_transition * test(processor): use identity instead of lambda for transition in pipelines * fix(processor): specialized processors respect contract by raising if none (#1909) * fix(processor): specialized processor now raise * test(processor): fix tests for now raise specialized processors * test(processor): use identity in newly introduced pipeline * refactor(processor): clarify action types, distinguish PolicyAction, RobotAction, and EnvAction (#1908) * refactor(processor): split action from policy, robots and environment - Updated function names to robot_action_to_transition and robot_transition_to_action across multiple files to better reflect their purpose in processing robot actions. - Adjusted references in the RobotProcessorPipeline and related components to ensure compatibility with the new naming convention. - Enhanced type annotations for action parameters to improve code readability and maintainability. * refactor(converters): rename robot_transition_to_action to transition_to_robot_action - Updated function names across multiple files to improve clarity and consistency in processing robot actions. - Adjusted references in RobotProcessorPipeline and related components to align with the new naming convention. - Simplified action handling in the AddBatchDimensionProcessorStep by removing unnecessary checks for action presence. * refactor(converters): update references to transition_to_robot_action - Renamed all instances of robot_transition_to_action to transition_to_robot_action across multiple files for consistency and clarity in the processing of robot actions. - Adjusted the RobotProcessorPipeline configurations to reflect the new naming convention, enhancing code readability. * refactor(processor): update Torch2NumpyActionProcessorStep to extend ActionProcessorStep - Changed the base class of Torch2NumpyActionProcessorStep from PolicyActionProcessorStep to ActionProcessorStep, aligning it with the current architecture of action processing. - This modification enhances the clarity of the class's role in the processing pipeline. * fix(processor): main action processor can take also EnvAction --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processor): phone processor is now an RobotActionProcessorStep * fix(processor): use subprocessors in AddBatchDimensionProcessorStep only if we have the ingredients * fix(robots): remove action prefix hard-coded in teleop keyboard and gamepad * feat(processor): enhance type safety with generic DataProcessorPipeline for policy and robot pipelines (#1915) * refactor(processor): enhance type annotations for processors in record, replay, teleoperate, and control utils - Updated type annotations for preprocessor and postprocessor parameters in record_loop and predict_action functions to specify the expected dictionary types. - Adjusted robot_action_processor type in ReplayConfig and TeleoperateConfig to improve clarity and maintainability. - Ensured consistency in type definitions across multiple files, enhancing overall code readability. * refactor(processor): enhance type annotations for RobotProcessorPipeline in various files - Updated type annotations for RobotProcessorPipeline instances in evaluate.py, record.py, replay.py, teleoperate.py, and other related files to specify input and output types more clearly. - Introduced new type conversions for PolicyAction and EnvTransition to improve type safety and maintainability across the processing pipelines. - Ensured consistency in type definitions, enhancing overall code readability and reducing potential runtime errors. * refactor(processor): update transition handling in processors to use transition_to_batch - Replaced direct transition handling with transition_to_batch in various processor tests and implementations to ensure consistent batching of input data. - Updated assertions in tests to reflect changes in data structure, enhancing clarity and maintainability. - Improved overall code readability by standardizing the way transitions are processed across different processor types. * refactor(tests): standardize transition key usage in processor tests - Updated assertions in processor test files to utilize the TransitionKey for action references, enhancing consistency across tests. - Replaced direct string references with TransitionKey constants for improved readability and maintainability. - Ensured that all relevant tests reflect these changes, contributing to a more uniform approach in handling transitions. * refactor(processor): unify action imports and enhance type clarity across multiple files - Updated imports in various files to include RobotAction and PolicyAction directly from the processor module, improving clarity and consistency. - Removed redundant imports from core, streamlining the codebase and enhancing maintainability. - Adjusted type annotations and references in the RobotProcessorPipeline and related components to align with the new import structure, ensuring better type safety and readability. * refactor(processor): migrate policy normalization to use factory functions - Updated the migration script to utilize `make_pre_post_processors` and `make_policy_config` from `lerobot.policies.factory`, enhancing consistency with the current codebase. - Improved normalization statistics extraction and processor pipeline creation, ensuring compatibility with the new `PolicyProcessorPipeline` architecture. - Cleaned up configuration handling by removing unnecessary fields and adding normalization mapping directly to the config. - Enhanced type safety and readability by refining feature type and normalization mode handling. * debug(scripts): simplify record with processors (#1918) Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> * refactor(processor): update migration script for policy normalization and hub integration - Modified the migration script to include a branch argument for pushing to the hub, enhancing flexibility in version control. - Improved error handling by ensuring the policy type is extracted from the configuration, promoting robustness. - Streamlined the process of saving and pushing model components to the hub, allowing for a single commit with optional PR creation. - Updated the commit message and description for better clarity on the migration changes and benefits, ensuring users are informed of the new architecture and usage. * fixes for processors used in phone teleop * fixes for rotation matrix * add empty obs and act in create_initial_features * use observation instead of obs * docs(processor): update docstrings pipeline (#1920) * chore(docs): Processor doc (#1685) * chore(docs): initialize doc * Added script for the second part of the processor doc * precommit style nit * improved part 2 of processor guide * Add comprehensive documentation for processors in robotics - Introduced a detailed guide on processors, covering their role in transforming raw robot data into model-ready inputs and vice versa. - Explained core concepts such as EnvTransition, ProcessorStep, and RobotProcessor, along with their functionalities. - Included examples of common processor steps like normalization, device management, batch processing, and text tokenization. - Provided insights on building complete pipelines, integrating processors into training loops, and saving/loading configurations. - Emphasized best practices and advanced features for effective usage of processors in robotics applications. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(docs): Enhance introduction to processors with additional converter functions - Updated the introduction to processors documentation to include default batch-to-transition and transition-to-batch converters. - Added detailed descriptions and examples for new specialized converter functions: `to_transition_teleop_action`, `to_transition_robot_observation`, `to_output_robot_action`, and `to_dataset_frame`. - Improved clarity on how these converters facilitate integration with existing robotics applications. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Improved doc implement_your_own_pipeline - Use normalization processor as default example - Add section on transform features - Add section on overrides. * Add phone docs and use pipeline for robots/teleop docs * Fix typo in documentation for adapters in robots/teleop section * Enhance documentation for processors with detailed explanations and examples - Updated the introduction to processors, clarifying the role of `EnvTransition` and `ProcessorStep`. - Introduced `DataProcessorPipeline` as a generic orchestrator for chaining processor steps. - Added comprehensive descriptions of new converter functions and their applications. - Improved clarity on type safety and the differences between `RobotProcessorPipeline` and `PolicyProcessorPipeline`. - Included examples for various processing scenarios, emphasizing best practices for data handling in robotics. * Enhance documentation for processor migration and debugging - Added detailed sections on the migration of models to the new `PolicyProcessorPipeline` system, including breaking changes and migration scripts. - Introduced a comprehensive guide for debugging processor pipelines, covering common issues, step-by-step inspection, and runtime monitoring techniques. - Updated examples to reflect new usage patterns and best practices for processor implementation and error handling. - Clarified the role of various processor steps and their configurations in the context of robotics applications. --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Pepijn <pepijn@huggingface.co> * docs: Add new section for debugging processor pipelines - Introduced a new documentation entry for debugging processor pipelines, enhancing the existing guide on processors. - This addition aims to provide users with insights and best practices for troubleshooting and optimizing their processor workflows. * fix(processor): phone examples (#1921) * fix(processor): phone examples * chore(processor): simplify gripper in phone example kinematic chain --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processors): several additions (#1926) * chore(processor): remove merge_transitions functions (#1925) * refactor(processors): move processors out of configs (#1927) * chore(processor): streamline combine_features_dict (#1928) * chore(policies): use new constants (#1929) * fix(deps): right version transformers (#1930) * fix(tests): add none + disable async tests for now (#1931) * refactor(processor): transform_features loop + EAFP (#1932) * fix(processors): make sure nested dict are also shallow copied (#1939) * refactor(processor): replace ModelHubMixin with HubMixin and enhance save_pretrained method (#1937) - Updated DataProcessorPipeline to use HubMixin instead of ModelHubMixin for improved functionality. - Refactored save_pretrained method to handle saving * refactor(docs): streamline monitoring hooks and enhance performance reporting - Removed the log_shapes and measure_performance hooks, simplifying the monitoring process to focus on NaN checks. - Updated performance reporting to include maximum processing times alongside average times for better insights. - Clarified documentation regarding the processing pipeline and feature transformations. * fix teleop, record and eval (#1940) * fix cmd record, eval * chore(processor): update input output of main 3 processors for better semantics (#1942) * chore(processor): update input output of main 3 processors for better semantics * refactor(processor): replace Any with RobotObservation for improved type safety in processors * fix(processors): no PolicyObservation * chore(processor): update with RobotObservation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * test(processor): fix batch expectation * feat(example): Add SO100 EE pipeline control (teleop+record) (#1943) * feat(examples): add ee so100 processors teleop & record * refactor(processor): improve FK processor for better use compatability * docs(processor): enhance tutorial on implementing custom processors - Updated the tutorial to use `NormalizerProcessorStep` as the primary example, clarifying its role in normalizing observations and actions. - Improved explanations of the need for custom processors, emphasizing data compatibility and processing requirements. - Added code snippets demonstrating the normalization process and the configuration of processor pipelines. - Enhanced the introduction to processors, detailing their function as translators between raw robot data and model inputs. - Included examples of real-world processor configurations for both training and inference scenarios. * docs(debug): enhance debugging guide for processor pipelines - Streamlined the introduction to clarify the challenges of debugging complex processor pipelines. - Expanded the section on hooks, detailing their purpose and implementation for runtime monitoring. - Introduced step-by-step debugging techniques, emphasizing the use of the `step_through()` method for inspecting intermediate states. - Added examples of feature validation to ensure data structure contracts are met. - Consolidated best practices for debugging, highlighting the synergy between hooks, step-through debugging, and feature validation. * chore(processors): tokenizers raises and remove tensor conversion (#1949) * chore(processor): remove unused transition_features dict * feat(ee): add so100_to_so100_EE replay and evaluate examples * chore(examples): homogenize style across example files (#1955) * chore(examples): homogenize style across example files * chore(examples): homogenize style across example files eval + replay * chore(examples): homogenize headers * test(async): fix feature manipulation (#1957) * test(async): fix feature manipulation * chore(processor): remove unused functions * fix(processor): Preserve stats overrides in normalizer load_state_dict and fix training resumption (#1958) * feat(processor): enhance normalization handling and state management - Added support for additional normalization modes including IDENTITY. - Introduced a new function `clean_state_dict` to remove specific substrings from state dict keys. - Implemented preservation of explicitly provided normalization statistics during state loading. - Updated training script to conditionally provide dataset statistics based on resume state. - Expanded tests to verify the correct behavior of stats override preservation and loading. * fix(train): remove redundant comment regarding state loading - Removed a comment that noted the preprocessor and postprocessor state is already loaded when resuming training, as it was deemed unnecessary for clarity. * test(processor): update tests to handle missing or invalid task keys - Modified tests to assert that the processor raises appropriate exceptions when the task key is missing or has an invalid value in the complementary data. - Ensured that the tests cover cases for None, integer, and mixed list task values, improving robustness against invalid inputs. * fix(processor): enforce signatures * chore(processor): update comments in record.py * test(processor): fix isinstance and cuda test * modify phone docs * fix(processor): reorder output steps to ensure correct processing sequence (#1961) - Moved DeviceProcessorStep to the end of the output steps in multiple processor files to maintain the intended processing order. - Updated corresponding tests to reflect the change in step order. * fix(processors): assumptions for robot_action_processor & teleop_action_processor (#1964) * fix(processors): new assumptions pipeline * fix(processors): ee jj phone teleop replay record working * chore(processors): update comments and default vars * chore(processor): remove unnecessary copy * chore(processor): added todo assumption gripper * fix(processors): eval using detected device * finish phone docs * fix correct image link * feat(processor): implement migration detection and error handling for processor configurations (#1968) * feat(processor): implement migration detection and error handling for processor configurations - Added ProcessorMigrationError to handle migration requirements for old model formats. - Enhanced DataProcessorPipeline.from_pretrained to include robust migration detection logic. - Implemented methods for resolving configuration sources, validating loaded configs, and checking for valid processor configurations. - Introduced comprehensive tests for migration detection and configuration validation to ensure correct behavior. * refactor(processor): simplify loading logic and enhance migration detection - Refactored DataProcessorPipeline to implement a simplified three-way loading strategy for configuration files. - Introduced explicit config_filename parameter to avoid ambiguity during loading. - Updated ProcessorMigrationError to provide clearer error messages for migration requirements. - Enhanced tests to cover new loading logic and ensure proper migration detection. - Removed deprecated methods related to config source resolution. * fix(processor) RL (#1953) * fix(gym_manipulator) general fixes to make it compitable * fix for dataset v3.0 * fix for gym_manipulator * add map policy action to robot action wrappers in a seperate scripts * added unittest for policy to robot bridge * fixes for gripper penalty * fix style * fix gamepad controller * fixes for sim teleop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * modify numpy2torch to a regular processor as a quick fix * missing imports?! * - Removed the use of `AddRobotObservationAsComplimentaryData` from `gym_manipulator` and thus the codebase - Added get_raw_joint_positions functions to RobotEnv - Pass raw_joint_positions as input to the action_pipeline in `gym_manipulator` - Add `InverseKinematicsRLStep` to be tailored towards the need of RL which requires the use of the IK solution as the main reference point of the control loop - Added the option `use_ik_solution` in `EEReferenceDelta` step to rely on the ik solution rather than the joint values * -Updated links to all the config files to place them in the new repo with configs compatible with the pipeline --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> * fix(tests): update test cases for loading pipelines with specific config filenames - Modified test cases to include explicit configuration filenames when loading pipelines in `test_policy_robot_bridge.py`. - Ensured that the tests reflect the correct loading behavior for both robot-to-policy and policy-to-robot transitions. * fix(examples): train mps processor (#1970) * fix(examples): train mps processor * fix(processor): add MPS compatibility for float64 tensors - Implemented a workaround to convert float64 tensors to float32 when using the MPS device, as MPS does not support float64. - Added unit tests to verify the automatic conversion of float64 tensors to float32 and ensure compatibility with various tensor types on the MPS device. --------- Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Steven Palma <steven.palma@huggingface.co> Co-authored-by: Pepijn <pepijn@huggingface.co>
This commit is contained in:
@@ -30,9 +30,18 @@
|
||||
- local: smolvla
|
||||
title: Finetune SmolVLA
|
||||
title: "Policies"
|
||||
|
||||
- sections:
|
||||
- local: introduction_processors
|
||||
title: Introduction to Robot Processors
|
||||
- local: debug_processor_pipeline
|
||||
title: Debug your processor pipeline
|
||||
- local: implement_your_own_processor
|
||||
title: Implement your own processor
|
||||
- local: processors_robots_teleop
|
||||
title: Processors for Robots and Teleoperators
|
||||
title: "Robot Processors"
|
||||
- sections:
|
||||
- local: hope_jr
|
||||
title: Hope Jr
|
||||
- local: so101
|
||||
title: SO-101
|
||||
- local: so100
|
||||
@@ -41,9 +50,15 @@
|
||||
title: Koch v1.1
|
||||
- local: lekiwi
|
||||
title: LeKiwi
|
||||
- local: hope_jr
|
||||
title: Hope Jr
|
||||
- local: reachy2
|
||||
title: Reachy 2
|
||||
title: "Robots"
|
||||
- sections:
|
||||
- local: phone_teleop
|
||||
title: Phone
|
||||
title: "Teleoperators"
|
||||
- sections:
|
||||
- local: notebooks
|
||||
title: Notebooks
|
||||
|
||||
@@ -1,5 +1,61 @@
|
||||
# Backward compatibility
|
||||
|
||||
## Policy Normalization Migration (PR #1452)
|
||||
|
||||
**Breaking Change**: LeRobot policies no longer have built-in normalization layers embedded in their weights. Normalization is now handled by external `PolicyProcessorPipeline` components.
|
||||
|
||||
### What changed?
|
||||
|
||||
| | Before PR #1452 | After PR #1452 |
|
||||
| -------------------------- | ------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| **Normalization Location** | Embedded in model weights (`normalize_inputs.*`) | External `PolicyProcessorPipeline` components |
|
||||
| **Model State Dict** | Contains normalization statistics | **Clean weights only** - no normalization parameters |
|
||||
| **Usage** | `policy(batch)` handles everything | `preprocessor(batch)` → `policy(...)` → `postprocessor(...)` |
|
||||
|
||||
### Impact on existing models
|
||||
|
||||
- Models trained **before** PR #1452 have normalization embedded in their weights
|
||||
- These models need migration to work with the new `PolicyProcessorPipeline` system
|
||||
- The migration extracts normalization statistics and creates separate processor pipelines
|
||||
|
||||
### Migrating old models
|
||||
|
||||
Use the migration script to convert models with embedded normalization:
|
||||
|
||||
```shell
|
||||
python src/lerobot/processor/migrate_policy_normalization.py \
|
||||
--pretrained-path lerobot/act_aloha_sim_transfer_cube_human \
|
||||
--push-to-hub \
|
||||
--branch migrated
|
||||
```
|
||||
|
||||
The script:
|
||||
|
||||
1. **Extracts** normalization statistics from model weights
|
||||
2. **Creates** external preprocessor and postprocessor pipelines
|
||||
3. **Removes** normalization layers from model weights
|
||||
4. **Saves** clean model + processor pipelines
|
||||
5. **Pushes** to Hub with automatic PR creation
|
||||
|
||||
### Using migrated models
|
||||
|
||||
```python
|
||||
# New usage pattern (after migration)
|
||||
from lerobot.policies.factory import make_policy, make_pre_post_processors
|
||||
|
||||
# Load model and processors separately
|
||||
policy = make_policy(config, ds_meta=dataset.meta)
|
||||
preprocessor, postprocessor = make_pre_post_processors(
|
||||
policy_cfg=config,
|
||||
dataset_stats=dataset.meta.stats
|
||||
)
|
||||
|
||||
# Process data through pipeline
|
||||
processed_batch = preprocessor(raw_batch)
|
||||
action = policy.select_action(processed_batch)
|
||||
final_action = postprocessor(action)
|
||||
```
|
||||
|
||||
## Hardware API redesign
|
||||
|
||||
PR [#777](https://github.com/huggingface/lerobot/pull/777) improves the LeRobot calibration but is **not backward-compatible**. Below is a overview of what changed and how you can continue to work with datasets created before this pull request.
|
||||
|
||||
299
docs/source/debug_processor_pipeline.mdx
Normal file
299
docs/source/debug_processor_pipeline.mdx
Normal file
@@ -0,0 +1,299 @@
|
||||
# Debug Your Processor Pipeline
|
||||
|
||||
Processor pipelines can be complex, especially when chaining multiple transformation steps.
|
||||
Unlike simple function calls, pipelines lack natural observability, you can't easily see what happens
|
||||
between each step or where things go wrong.
|
||||
This guide provides debugging tools and techniques specifically designed to address these challenges
|
||||
and help you understand data flow through your pipelines.
|
||||
|
||||
We'll explore three complementary debugging approaches: **hooks** for runtime monitoring, **step-through debugging** for detailed inspection, and **feature validation** for catching structural mismatches. Each serves a different purpose and together they provide complete visibility into your pipeline's behavior.
|
||||
|
||||
## Understanding Hooks
|
||||
|
||||
Hooks are functions that get called at specific points during pipeline execution.
|
||||
They provide a way to inspect, monitor, or modify data without changing your pipeline code.
|
||||
Think of them as "event listeners" for your pipeline.
|
||||
|
||||
### What is a Hook?
|
||||
|
||||
A hook is a callback function that gets automatically invoked at specific moments during pipeline execution.
|
||||
The concept comes from event-driven programming, imagine you could "hook into" the pipeline's execution flow to observe or react to what's happening.
|
||||
|
||||
Think of hooks like inserting checkpoints into your pipeline. Every time the pipeline reaches one of these checkpoints, it pauses briefly to call your hook function, giving you a chance to inspect the current state, log information, and validate data.
|
||||
|
||||
A hook is simply a function that accepts two parameters:
|
||||
|
||||
- `step_idx: int` - The index of the current processing step (0, 1, 2, etc.)
|
||||
- `transition: EnvTransition` - The data transition at that point in the pipeline
|
||||
|
||||
The beauty of hooks is their non-invasive nature: you can add monitoring, validation, or debugging logic without changing a single line of your pipeline code. The pipeline remains clean and focused on its core logic, while hooks handle the cross-cutting concerns like logging, monitoring, and debugging.
|
||||
|
||||
### Before vs After Hooks
|
||||
|
||||
The pipeline supports two types of hooks:
|
||||
|
||||
- **Before hooks** (`register_before_step_hook`) - Called before each step executes
|
||||
- **After hooks** (`register_after_step_hook`) - Called after each step completes
|
||||
|
||||
```python
|
||||
def before_hook(step_idx: int, transition: EnvTransition):
|
||||
"""Called before step processes the transition."""
|
||||
print(f"About to execute step {step_idx}")
|
||||
# Useful for: logging, validation, setup
|
||||
|
||||
def after_hook(step_idx: int, transition: EnvTransition):
|
||||
"""Called after step has processed the transition."""
|
||||
print(f"Completed step {step_idx}")
|
||||
# Useful for: monitoring results, cleanup, debugging
|
||||
|
||||
processor.register_before_step_hook(before_hook)
|
||||
processor.register_after_step_hook(after_hook)
|
||||
```
|
||||
|
||||
### Implementing a NaN Detection Hook
|
||||
|
||||
Here's a practical example of a hook that detects NaN values:
|
||||
|
||||
```python
|
||||
def check_nans(step_idx: int, transition: EnvTransition):
|
||||
"""Check for NaN values in observations."""
|
||||
obs = transition.get(TransitionKey.OBSERVATION)
|
||||
if obs:
|
||||
for key, value in obs.items():
|
||||
if isinstance(value, torch.Tensor) and torch.isnan(value).any():
|
||||
print(f"NaN detected in {key} at step {step_idx}")
|
||||
|
||||
# Register the hook to run after each step
|
||||
processor.register_after_step_hook(check_nans)
|
||||
|
||||
# Process your data - the hook will be called automatically
|
||||
output = processor(input_data)
|
||||
|
||||
# Remove the hook when done debugging
|
||||
processor.unregister_after_step_hook(check_nans)
|
||||
```
|
||||
|
||||
### How Hooks Work Internally
|
||||
|
||||
Understanding the internal mechanism helps you use hooks more effectively. The pipeline maintains two separate lists: one for before-step hooks and another for after-step hooks. When you register a hook, it's simply appended to the appropriate list.
|
||||
|
||||
During execution, the pipeline follows a strict sequence: for each processing step, it first calls all before-hooks in registration order, then executes the actual step transformation, and finally calls all after-hooks in registration order. This creates a predictable, sandwich-like structure around each step.
|
||||
|
||||
The key insight is that hooks don't change the core pipeline logic—they're purely additive. The pipeline's `_forward` method orchestrates this dance between hooks and processing steps, ensuring that your debugging or monitoring code runs at exactly the right moments without interfering with the main data flow.
|
||||
|
||||
Here's a simplified view of how the pipeline executes hooks:
|
||||
|
||||
```python
|
||||
class DataProcessorPipeline:
|
||||
def __init__(self):
|
||||
self.steps = [...]
|
||||
self.before_step_hooks = [] # List of before hooks
|
||||
self.after_step_hooks = [] # List of after hooks
|
||||
|
||||
def _forward(self, transition):
|
||||
"""Internal method that processes the transition through all steps."""
|
||||
for step_idx, processor_step in enumerate(self.steps):
|
||||
# 1. Call all BEFORE hooks
|
||||
for hook in self.before_step_hooks:
|
||||
hook(step_idx, transition)
|
||||
|
||||
# 2. Execute the actual processing step
|
||||
transition = processor_step(transition)
|
||||
|
||||
# 3. Call all AFTER hooks
|
||||
for hook in self.after_step_hooks:
|
||||
hook(step_idx, transition)
|
||||
|
||||
return transition
|
||||
|
||||
def register_before_step_hook(self, hook_fn):
|
||||
self.before_step_hooks.append(hook_fn)
|
||||
|
||||
def register_after_step_hook(self, hook_fn):
|
||||
self.after_step_hooks.append(hook_fn)
|
||||
```
|
||||
|
||||
### Execution Flow
|
||||
|
||||
The execution flow looks like this:
|
||||
|
||||
```
|
||||
Input → Before Hook → Step 0 → After Hook → Before Hook → Step 1 → After Hook → ... → Output
|
||||
```
|
||||
|
||||
For example, with 3 steps and both hook types:
|
||||
|
||||
```python
|
||||
def timing_before(step_idx, transition):
|
||||
print(f"⏱️ Starting step {step_idx}")
|
||||
|
||||
def validation_after(step_idx, transition):
|
||||
print(f"✅ Completed step {step_idx}")
|
||||
|
||||
processor.register_before_step_hook(timing_before)
|
||||
processor.register_after_step_hook(validation_after)
|
||||
|
||||
# This will output:
|
||||
# ⏱️ Starting step 0
|
||||
# ✅ Completed step 0
|
||||
# ⏱️ Starting step 1
|
||||
# ✅ Completed step 1
|
||||
# ⏱️ Starting step 2
|
||||
# ✅ Completed step 2
|
||||
```
|
||||
|
||||
### Multiple Hooks
|
||||
|
||||
You can register multiple hooks of the same type - they execute in the order registered:
|
||||
|
||||
```python
|
||||
def log_shapes(step_idx: int, transition: EnvTransition):
|
||||
obs = transition.get(TransitionKey.OBSERVATION)
|
||||
if obs:
|
||||
print(f"Step {step_idx} observation shapes:")
|
||||
for key, value in obs.items():
|
||||
if isinstance(value, torch.Tensor):
|
||||
print(f" {key}: {value.shape}")
|
||||
|
||||
processor.register_after_step_hook(check_nans) # Executes first
|
||||
processor.register_after_step_hook(log_shapes) # Executes second
|
||||
|
||||
# Both hooks will be called after each step in registration order
|
||||
output = processor(input_data)
|
||||
```
|
||||
|
||||
While hooks are excellent for monitoring specific issues (like NaN detection) or gathering metrics during normal pipeline execution, sometimes you need to dive deeper. When you want to understand exactly what happens at each step or debug complex transformation logic, step-through debugging provides the detailed inspection you need.
|
||||
|
||||
## Step-Through Debugging
|
||||
|
||||
Step-through debugging is like having a slow-motion replay for your pipeline. Instead of watching your data get transformed in one quick blur from input to output, you can pause and examine what happens after each individual step.
|
||||
|
||||
This approach is particularly valuable when you're trying to understand a complex pipeline, debug unexpected behavior, or verify that each transformation is working as expected. Unlike hooks, which are great for automated monitoring, step-through debugging gives you manual, interactive control over the inspection process.
|
||||
|
||||
The `step_through()` method is a generator that yields the transition state after each processing step, allowing you to inspect intermediate results. Think of it as creating a series of snapshots of your data as it flows through the pipeline—each snapshot shows you exactly what your data looks like after one more transformation has been applied.
|
||||
|
||||
### How Step-Through Works
|
||||
|
||||
The `step_through()` method fundamentally changes how the pipeline executes. Instead of running all steps in sequence and only returning the final result, it transforms the pipeline into an iterator that yields intermediate results.
|
||||
|
||||
Here's what happens internally: the method starts by converting your input data into the pipeline's internal transition format, then yields this initial state. Next, it applies the first processing step and yields the result. Then it applies the second step to that result and yields again, and so on. Each `yield` gives you a complete snapshot of the transition at that point.
|
||||
|
||||
This generator pattern is powerful because it's lazy—the pipeline only computes the next step when you ask for it. This means you can stop at any point, inspect the current state thoroughly, and decide whether to continue. You're not forced to run the entire pipeline just to debug one problematic step.
|
||||
|
||||
Instead of running the entire pipeline and only seeing the final result, `step_through()` pauses after each step and gives you the intermediate transition:
|
||||
|
||||
```python
|
||||
# This creates a generator that yields intermediate states
|
||||
for i, intermediate_result in enumerate(processor.step_through(input_data)):
|
||||
print(f"=== After step {i} ===")
|
||||
|
||||
# Inspect the observation at this stage
|
||||
obs = intermediate_result.get(TransitionKey.OBSERVATION)
|
||||
if obs:
|
||||
for key, value in obs.items():
|
||||
if isinstance(value, torch.Tensor):
|
||||
print(f"{key}: shape={value.shape}, dtype={value.dtype}")
|
||||
```
|
||||
|
||||
### Interactive Debugging with Breakpoints
|
||||
|
||||
You can add breakpoints in the step-through loop to interactively debug:
|
||||
|
||||
```python
|
||||
# Step through the pipeline with debugging
|
||||
for i, intermediate in enumerate(processor.step_through(data)):
|
||||
print(f"Step {i}: {processor.steps[i].__class__.__name__}")
|
||||
|
||||
# Set a breakpoint to inspect the current state
|
||||
breakpoint() # Debugger will pause here
|
||||
|
||||
# You can now inspect 'intermediate' in the debugger:
|
||||
# - Check tensor shapes and values
|
||||
# - Verify expected transformations
|
||||
# - Look for unexpected changes
|
||||
```
|
||||
|
||||
During the debugger session, you can:
|
||||
|
||||
- Examine `intermediate[TransitionKey.OBSERVATION]` to see observation data
|
||||
- Check `intermediate[TransitionKey.ACTION]` for action transformations
|
||||
- Inspect any part of the transition to understand what each step does
|
||||
|
||||
Step-through debugging is perfect for understanding the _data_ transformations, but what about the _structure_ of that data? While hooks and step-through help you debug runtime behavior, you also need to ensure your pipeline produces data in the format expected by downstream components. This is where feature contract validation comes in.
|
||||
|
||||
## Validating Feature Contracts
|
||||
|
||||
Feature contracts define what data structure your pipeline expects as input and produces as output.
|
||||
Validating these contracts helps catch mismatches early.
|
||||
|
||||
### Understanding Feature Contracts
|
||||
|
||||
Each processor step has a `transform_features()` method that describes how it changes the data structure:
|
||||
|
||||
```python
|
||||
# Get the expected output features from your pipeline
|
||||
initial_features = {
|
||||
PipelineFeatureType.OBSERVATION: {
|
||||
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(7,)),
|
||||
"observation.image": PolicyFeature(type=FeatureType.IMAGE, shape=(3, 224, 224))
|
||||
},
|
||||
PipelineFeatureType.ACTION: {
|
||||
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,))
|
||||
}
|
||||
}
|
||||
|
||||
# Check what your pipeline will output
|
||||
output_features = processor.transform_features(initial_features)
|
||||
|
||||
print("Input features:")
|
||||
for feature_type, features in initial_features.items():
|
||||
print(f" {feature_type}:")
|
||||
for key, feature in features.items():
|
||||
print(f" {key}: {feature.type.value}, shape={feature.shape}")
|
||||
|
||||
print("\nOutput features:")
|
||||
for feature_type, features in output_features.items():
|
||||
print(f" {feature_type}:")
|
||||
for key, feature in features.items():
|
||||
print(f" {key}: {feature.type.value}, shape={feature.shape}")
|
||||
```
|
||||
|
||||
### Verifying Expected Features
|
||||
|
||||
Check that your pipeline produces the features you expect:
|
||||
|
||||
```python
|
||||
# Define what features you expect the pipeline to produce
|
||||
expected_keys = ["observation.state", "observation.image", "action"]
|
||||
|
||||
print("Validating feature contract...")
|
||||
for expected_key in expected_keys:
|
||||
found = False
|
||||
for feature_type, features in output_features.items():
|
||||
if expected_key in features:
|
||||
feature = features[expected_key]
|
||||
print(f"✅ {expected_key}: {feature.type.value}, shape={feature.shape}")
|
||||
found = True
|
||||
break
|
||||
|
||||
if not found:
|
||||
print(f"❌ Missing expected feature: {expected_key}")
|
||||
```
|
||||
|
||||
This validation helps ensure your pipeline will work correctly with downstream components that expect specific data structures.
|
||||
|
||||
## Summary
|
||||
|
||||
Now that you understand the three debugging approaches, you can tackle any pipeline issue systematically:
|
||||
|
||||
1. **Hooks** - For runtime monitoring and validation without modifying pipeline code
|
||||
2. **Step-through** - For inspecting intermediate states and understanding transformations
|
||||
3. **Feature validation** - For ensuring data structure contracts are met
|
||||
|
||||
**When to use each approach:**
|
||||
|
||||
- Start with **step-through debugging** when you need to understand what your pipeline does or when something unexpected happens
|
||||
- Add **hooks** for continuous monitoring during development and production to catch issues automatically
|
||||
- Use **feature validation** before deployment to ensure your pipeline works with downstream components
|
||||
|
||||
These three tools work together to give you the complete observability that complex pipelines naturally lack. With hooks watching for issues, step-through helping you understand behavior, and feature validation ensuring compatibility, you'll be able to debug any pipeline confidently and efficiently.
|
||||
@@ -4,7 +4,13 @@ In this tutorial you will go through the full Human-in-the-Loop Sample-Efficient
|
||||
|
||||
HIL-SERL is a sample-efficient reinforcement learning algorithm that combines human demonstrations with online learning and human interventions. The approach starts from a small set of human demonstrations, uses them to train a reward classifier, and then employs an actor-learner architecture where humans can intervene during policy execution to guide exploration and correct unsafe behaviors. In this tutorial, you'll use a gamepad to provide interventions and control the robot during the learning process.
|
||||
|
||||
It combines three key ingredients: 1. **Offline demonstrations & reward classifier:** a handful of human-teleop episodes plus a vision-based success detector give the policy a shaped starting point. 2. **On-robot actor / learner loop with human interventions:** a distributed Soft Actor Critic (SAC) learner updates the policy while an actor explores on the physical robot; the human can jump in at any time to correct dangerous or unproductive behaviour. 3. **Safety & efficiency tools:** joint/end-effector (EE) bounds, crop region of interest (ROI) preprocessing and WandB monitoring keep the data useful and the hardware safe.
|
||||
It combines three key ingredients:
|
||||
|
||||
1. **Offline demonstrations & reward classifier:** a handful of human-teleop episodes plus a vision-based success detector give the policy a shaped starting point.
|
||||
|
||||
2. **On-robot actor / learner loop with human interventions:** a distributed Soft Actor Critic (SAC) learner updates the policy while an actor explores on the physical robot; the human can jump in at any time to correct dangerous or unproductive behaviour.
|
||||
|
||||
3. **Safety & efficiency tools:** joint/end-effector (EE) bounds, crop region of interest (ROI) preprocessing and WandB monitoring keep the data useful and the hardware safe.
|
||||
|
||||
Together these elements let HIL-SERL reach near-perfect task success and faster cycle times than imitation-only baselines.
|
||||
|
||||
@@ -56,30 +62,242 @@ pip install -e ".[hilserl]"
|
||||
|
||||
### Understanding Configuration
|
||||
|
||||
The training process begins with proper configuration for the HILSerl environment. The configuration class of interest is `HILSerlRobotEnvConfig` in `lerobot/envs/configs.py`. Which is defined as:
|
||||
The training process begins with proper configuration for the HILSerl environment. The main configuration class is `GymManipulatorConfig` in `lerobot/scripts/rl/gym_manipulator.py`, which contains nested `HILSerlRobotEnvConfig` and `DatasetConfig`. The configuration is organized into focused, nested sub-configs:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
class GymManipulatorConfig:
|
||||
env: HILSerlRobotEnvConfig # Environment configuration (nested)
|
||||
dataset: DatasetConfig # Dataset recording/replay configuration (nested)
|
||||
mode: str | None = None # "record", "replay", or None (for training)
|
||||
device: str = "cpu" # Compute device
|
||||
|
||||
class HILSerlRobotEnvConfig(EnvConfig):
|
||||
robot: RobotConfig | None = None # Main robot agent (defined in `lerobot/robots`)
|
||||
teleop: TeleoperatorConfig | None = None # Teleoperator agent, e.g., gamepad or leader arm, (defined in `lerobot/teleoperators`)
|
||||
wrapper: EnvTransformConfig | None = None # Environment wrapper settings; check `lerobot/scripts/server/gym_manipulator.py`
|
||||
fps: int = 10 # Control frequency
|
||||
teleop: TeleoperatorConfig | None = None # Teleoperator agent, e.g., gamepad or leader arm
|
||||
processor: HILSerlProcessorConfig # Processing pipeline configuration (nested)
|
||||
name: str = "real_robot" # Environment name
|
||||
mode: str = None # "record", "replay", or None (for training)
|
||||
repo_id: str | None = None # LeRobot dataset repository ID
|
||||
dataset_root: str | None = None # Local dataset root (optional)
|
||||
task: str = "" # Task identifier
|
||||
num_episodes: int = 10 # Number of episodes for recording
|
||||
episode: int = 0 # episode index for replay
|
||||
device: str = "cuda" # Compute device
|
||||
push_to_hub: bool = True # Whether to push the recorded datasets to Hub
|
||||
pretrained_policy_name_or_path: str | None = None # For policy loading
|
||||
reward_classifier_pretrained_path: str | None = None # For reward model
|
||||
number_of_steps_after_success: int = 0 # For reward classifier, collect more positive examples after a success to train a classifier
|
||||
task: str | None = None # Task identifier
|
||||
fps: int = 10 # Control frequency
|
||||
|
||||
# Nested processor configuration
|
||||
class HILSerlProcessorConfig:
|
||||
control_mode: str = "gamepad" # Control mode
|
||||
observation: ObservationConfig | None = None # Observation processing settings
|
||||
image_preprocessing: ImagePreprocessingConfig | None = None # Image crop/resize settings
|
||||
gripper: GripperConfig | None = None # Gripper control and penalty settings
|
||||
reset: ResetConfig | None = None # Environment reset and timing settings
|
||||
inverse_kinematics: InverseKinematicsConfig | None = None # IK processing settings
|
||||
reward_classifier: RewardClassifierConfig | None = None # Reward classifier settings
|
||||
max_gripper_pos: float | None = 100.0 # Maximum gripper position
|
||||
|
||||
# Sub-configuration classes
|
||||
class ObservationConfig:
|
||||
add_joint_velocity_to_observation: bool = False # Add joint velocities to state
|
||||
add_current_to_observation: bool = False # Add motor currents to state
|
||||
add_ee_pose_to_observation: bool = False # Add end-effector pose to state
|
||||
display_cameras: bool = False # Display camera feeds during execution
|
||||
|
||||
class ImagePreprocessingConfig:
|
||||
crop_params_dict: dict[str, tuple[int, int, int, int]] | None = None # Image cropping parameters
|
||||
resize_size: tuple[int, int] | None = None # Target image size
|
||||
|
||||
class GripperConfig:
|
||||
use_gripper: bool = True # Enable gripper control
|
||||
gripper_penalty: float = 0.0 # Penalty for inappropriate gripper usage
|
||||
gripper_penalty_in_reward: bool = False # Include gripper penalty in reward
|
||||
|
||||
class ResetConfig:
|
||||
fixed_reset_joint_positions: Any | None = None # Joint positions for reset
|
||||
reset_time_s: float = 5.0 # Time to wait during reset
|
||||
control_time_s: float = 20.0 # Maximum episode duration
|
||||
terminate_on_success: bool = True # Whether to terminate episodes on success detection
|
||||
|
||||
class InverseKinematicsConfig:
|
||||
urdf_path: str | None = None # Path to robot URDF file
|
||||
target_frame_name: str | None = None # End-effector frame name
|
||||
end_effector_bounds: dict[str, list[float]] | None = None # EE workspace bounds
|
||||
end_effector_step_sizes: dict[str, float] | None = None # EE step sizes per axis
|
||||
|
||||
class RewardClassifierConfig:
|
||||
pretrained_path: str | None = None # Path to pretrained reward classifier
|
||||
success_threshold: float = 0.5 # Success detection threshold
|
||||
success_reward: float = 1.0 # Reward value for successful episodes
|
||||
|
||||
# Dataset configuration
|
||||
class DatasetConfig:
|
||||
repo_id: str # LeRobot dataset repository ID
|
||||
task: str # Task identifier
|
||||
root: str | None = None # Local dataset root directory
|
||||
num_episodes_to_record: int = 5 # Number of episodes for recording
|
||||
replay_episode: int | None = None # Episode index for replay
|
||||
push_to_hub: bool = False # Whether to push datasets to Hub
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
### Processor Pipeline Architecture
|
||||
|
||||
HIL-SERL uses a modular processor pipeline architecture that processes robot observations and actions through a series of composable steps. The pipeline is divided into two main components:
|
||||
|
||||
#### Environment Processor Pipeline
|
||||
|
||||
The environment processor (`env_processor`) handles incoming observations and environment state:
|
||||
|
||||
1. **VanillaObservationProcessorStep**: Converts raw robot observations into standardized format
|
||||
2. **JointVelocityProcessorStep** (optional): Adds joint velocity information to observations
|
||||
3. **MotorCurrentProcessorStep** (optional): Adds motor current readings to observations
|
||||
4. **ForwardKinematicsJointsToEE** (optional): Computes end-effector pose from joint positions
|
||||
5. **ImageCropResizeProcessorStep** (optional): Crops and resizes camera images
|
||||
6. **TimeLimitProcessorStep** (optional): Enforces episode time limits
|
||||
7. **GripperPenaltyProcessorStep** (optional): Applies penalties for inappropriate gripper usage
|
||||
8. **RewardClassifierProcessorStep** (optional): Automated reward detection using vision models
|
||||
9. **AddBatchDimensionProcessorStep**: Converts data to batch format for neural network processing
|
||||
10. **DeviceProcessorStep**: Moves data to the specified compute device (CPU/GPU)
|
||||
|
||||
#### Action Processor Pipeline
|
||||
|
||||
The action processor (`action_processor`) handles outgoing actions and human interventions:
|
||||
|
||||
1. **AddTeleopActionAsComplimentaryDataStep**: Captures teleoperator actions for logging
|
||||
2. **AddTeleopEventsAsInfoStep**: Records intervention events and episode control signals
|
||||
3. **InterventionActionProcessorStep**: Handles human interventions and episode termination
|
||||
4. **Inverse Kinematics Pipeline** (when enabled):
|
||||
- **MapDeltaActionToRobotActionStep**: Converts delta actions to robot action format
|
||||
- **EEReferenceAndDelta**: Computes end-effector reference and delta movements
|
||||
- **EEBoundsAndSafety**: Enforces workspace safety bounds
|
||||
- **InverseKinematicsEEToJoints**: Converts end-effector actions to joint targets
|
||||
- **GripperVelocityToJoint**: Handles gripper control commands
|
||||
|
||||
#### Configuration Examples
|
||||
|
||||
**Basic Observation Processing**:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"observation": {
|
||||
"add_joint_velocity_to_observation": true,
|
||||
"add_current_to_observation": false,
|
||||
"display_cameras": false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Image Processing**:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"image_preprocessing": {
|
||||
"crop_params_dict": {
|
||||
"observation.images.front": [180, 250, 120, 150],
|
||||
"observation.images.side": [180, 207, 180, 200]
|
||||
},
|
||||
"resize_size": [128, 128]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Inverse Kinematics Setup**:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"inverse_kinematics": {
|
||||
"urdf_path": "path/to/robot.urdf",
|
||||
"target_frame_name": "end_effector",
|
||||
"end_effector_bounds": {
|
||||
"min": [0.16, -0.08, 0.03],
|
||||
"max": [0.24, 0.2, 0.1]
|
||||
},
|
||||
"end_effector_step_sizes": {
|
||||
"x": 0.02,
|
||||
"y": 0.02,
|
||||
"z": 0.02
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Advanced Observation Processing
|
||||
|
||||
The HIL-SERL framework supports additional observation processing features that can improve policy learning:
|
||||
|
||||
#### Joint Velocity Processing
|
||||
|
||||
Enable joint velocity estimation to provide the policy with motion information:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"observation": {
|
||||
"add_joint_velocity_to_observation": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This processor:
|
||||
|
||||
- Estimates joint velocities using finite differences between consecutive joint position readings
|
||||
- Adds velocity information to the observation state vector
|
||||
- Useful for policies that need motion awareness for dynamic tasks
|
||||
|
||||
#### Motor Current Processing
|
||||
|
||||
Monitor motor currents to detect contact forces and load conditions:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"observation": {
|
||||
"add_current_to_observation": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This processor:
|
||||
|
||||
- Reads motor current values from the robot's control system
|
||||
- Adds current measurements to the observation state vector
|
||||
- Helps detect contact events, object weights, and mechanical resistance
|
||||
- Useful for contact-rich manipulation tasks
|
||||
|
||||
#### Combined Observation Processing
|
||||
|
||||
You can enable multiple observation processing features simultaneously:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"observation": {
|
||||
"add_joint_velocity_to_observation": true,
|
||||
"add_current_to_observation": true,
|
||||
"add_ee_pose_to_observation": false,
|
||||
"display_cameras": false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Note**: Enabling additional observation features increases the state space dimensionality, which may require adjusting your policy network architecture and potentially collecting more training data.
|
||||
|
||||
### Finding Robot Workspace Bounds
|
||||
|
||||
Before collecting demonstrations, you need to determine the appropriate operational bounds for your robot.
|
||||
@@ -128,24 +346,58 @@ With the bounds defined, you can safely collect demonstrations for training. Tra
|
||||
|
||||
**Setting Up Record Mode**
|
||||
|
||||
Create a configuration file for recording demonstrations (or edit an existing one like [env_config_so100.json](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/env_config_so100.json)):
|
||||
Create a configuration file for recording demonstrations (or edit an existing one like [env_config.json](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/rl/env_config.json)):
|
||||
|
||||
1. Set `mode` to `"record"`
|
||||
2. Specify a unique `repo_id` for your dataset (e.g., "username/task_name")
|
||||
3. Set `num_episodes` to the number of demonstrations you want to collect
|
||||
4. Set `crop_params_dict` to `null` initially (we'll determine crops later)
|
||||
5. Configure `robot`, `cameras`, and other hardware settings
|
||||
1. Set `mode` to `"record"` at the root level
|
||||
2. Specify a unique `repo_id` for your dataset in the `dataset` section (e.g., "username/task_name")
|
||||
3. Set `num_episodes_to_record` in the `dataset` section to the number of demonstrations you want to collect
|
||||
4. Set `env.processor.image_preprocessing.crop_params_dict` to `{}` initially (we'll determine crops later)
|
||||
5. Configure `env.robot`, `env.teleop`, and other hardware settings in the `env` section
|
||||
|
||||
Example configuration section:
|
||||
|
||||
```json
|
||||
"mode": "record",
|
||||
"repo_id": "username/pick_lift_cube",
|
||||
"dataset_root": null,
|
||||
"task": "pick_and_lift",
|
||||
"num_episodes": 15,
|
||||
"episode": 0,
|
||||
"push_to_hub": true
|
||||
{
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "real_robot",
|
||||
"fps": 10,
|
||||
"processor": {
|
||||
"control_mode": "gamepad",
|
||||
"observation": {
|
||||
"display_cameras": false
|
||||
},
|
||||
"image_preprocessing": {
|
||||
"crop_params_dict": {},
|
||||
"resize_size": [128, 128]
|
||||
},
|
||||
"gripper": {
|
||||
"use_gripper": true,
|
||||
"gripper_penalty": 0.0
|
||||
},
|
||||
"reset": {
|
||||
"reset_time_s": 5.0,
|
||||
"control_time_s": 20.0
|
||||
}
|
||||
},
|
||||
"robot": {
|
||||
// ... robot configuration ...
|
||||
},
|
||||
"teleop": {
|
||||
// ... teleoperator configuration ...
|
||||
}
|
||||
},
|
||||
"dataset": {
|
||||
"repo_id": "username/pick_lift_cube",
|
||||
"root": null,
|
||||
"task": "pick_and_lift",
|
||||
"num_episodes_to_record": 15,
|
||||
"replay_episode": 0,
|
||||
"push_to_hub": true
|
||||
},
|
||||
"mode": "record",
|
||||
"device": "cpu"
|
||||
}
|
||||
```
|
||||
|
||||
### Using a Teleoperation Device
|
||||
@@ -191,10 +443,20 @@ The gamepad provides a very convenient way to control the robot and the episode
|
||||
To setup the gamepad, you need to set the `control_mode` to `"gamepad"` and define the `teleop` section in the configuration file.
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"teleop": {
|
||||
"type": "gamepad",
|
||||
"use_gripper": true
|
||||
"type": "gamepad",
|
||||
"use_gripper": true
|
||||
},
|
||||
"processor": {
|
||||
"control_mode": "gamepad",
|
||||
"gripper": {
|
||||
"use_gripper": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
<p align="center">
|
||||
@@ -216,11 +478,21 @@ The SO101 leader arm has reduced gears that allows it to move and track the foll
|
||||
To setup the SO101 leader, you need to set the `control_mode` to `"leader"` and define the `teleop` section in the configuration file.
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"teleop": {
|
||||
"type": "so101_leader",
|
||||
"port": "/dev/tty.usbmodem585A0077921", # check your port number
|
||||
"use_degrees": true
|
||||
"type": "so101_leader",
|
||||
"port": "/dev/tty.usbmodem585A0077921",
|
||||
"use_degrees": true
|
||||
},
|
||||
"processor": {
|
||||
"control_mode": "leader",
|
||||
"gripper": {
|
||||
"use_gripper": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
In order to annotate the success/failure of the episode, **you will need** to use a keyboard to press `s` for success, `esc` for failure.
|
||||
@@ -251,7 +523,7 @@ python -m lerobot.scripts.rl.gym_manipulator --config_path src/lerobot/configs/e
|
||||
|
||||
During recording:
|
||||
|
||||
1. The robot will reset to the initial position defined in the configuration file `fixed_reset_joint_positions`
|
||||
1. The robot will reset to the initial position defined in the configuration file `env.processor.reset.fixed_reset_joint_positions`
|
||||
2. Complete the task successfully
|
||||
3. The episode ends with a reward of 1 when you press the "success" button
|
||||
4. If the time limit is reached, or the fail button is pressed, the episode ends with a reward of 0
|
||||
@@ -310,11 +582,19 @@ observation.images.front: [180, 250, 120, 150]
|
||||
Add these crop parameters to your training configuration:
|
||||
|
||||
```json
|
||||
"crop_params_dict": {
|
||||
"observation.images.side": [180, 207, 180, 200],
|
||||
"observation.images.front": [180, 250, 120, 150]
|
||||
},
|
||||
"resize_size": [128, 128]
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"image_preprocessing": {
|
||||
"crop_params_dict": {
|
||||
"observation.images.side": [180, 207, 180, 200],
|
||||
"observation.images.front": [180, 250, 120, 150]
|
||||
},
|
||||
"resize_size": [128, 128]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
**Recommended image resolution**
|
||||
@@ -343,26 +623,52 @@ python -m lerobot.scripts.rl.gym_manipulator --config_path src/lerobot/configs/r
|
||||
|
||||
**Key Parameters for Data Collection**
|
||||
|
||||
- **mode**: set it to `"record"` to collect a dataset
|
||||
- **repo_id**: `"hf_username/dataset_name"`, name of the dataset and repo on the hub
|
||||
- **num_episodes**: Number of episodes to record
|
||||
- **number_of_steps_after_success**: Number of additional frames to record after a success (reward=1) is detected
|
||||
- **fps**: Number of frames per second to record
|
||||
- **push_to_hub**: Whether to push the dataset to the hub
|
||||
- **mode**: set it to `"record"` to collect a dataset (at root level)
|
||||
- **dataset.repo_id**: `"hf_username/dataset_name"`, name of the dataset and repo on the hub
|
||||
- **dataset.num_episodes_to_record**: Number of episodes to record
|
||||
- **env.processor.reset.terminate_on_success**: Whether to automatically terminate episodes when success is detected (default: `true`)
|
||||
- **env.fps**: Number of frames per second to record
|
||||
- **dataset.push_to_hub**: Whether to push the dataset to the hub
|
||||
|
||||
The `number_of_steps_after_success` parameter is crucial as it allows you to collect more positive examples. When a success is detected, the system will continue recording for the specified number of steps while maintaining the reward=1 label. Otherwise, there won't be enough states in the dataset labeled to 1 to train a good classifier.
|
||||
The `env.processor.reset.terminate_on_success` parameter allows you to control episode termination behavior. When set to `false`, episodes will continue even after success is detected, allowing you to collect more positive examples with the reward=1 label. This is crucial for training reward classifiers as it provides more success state examples in your dataset. When set to `true` (default), episodes terminate immediately upon success detection.
|
||||
|
||||
**Important**: For reward classifier training, set `terminate_on_success: false` to collect sufficient positive examples. For regular HIL-SERL training, keep it as `true` to enable automatic episode termination when the task is completed successfully.
|
||||
|
||||
Example configuration section for data collection:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "real_robot",
|
||||
"fps": 10,
|
||||
"processor": {
|
||||
"reset": {
|
||||
"reset_time_s": 5.0,
|
||||
"control_time_s": 20.0,
|
||||
"terminate_on_success": false
|
||||
},
|
||||
"gripper": {
|
||||
"use_gripper": true
|
||||
}
|
||||
},
|
||||
"robot": {
|
||||
// ... robot configuration ...
|
||||
},
|
||||
"teleop": {
|
||||
// ... teleoperator configuration ...
|
||||
}
|
||||
},
|
||||
"dataset": {
|
||||
"repo_id": "hf_username/dataset_name",
|
||||
"dataset_root": "data/your_dataset",
|
||||
"task": "reward_classifier_task",
|
||||
"num_episodes_to_record": 20,
|
||||
"replay_episode": null,
|
||||
"push_to_hub": true
|
||||
},
|
||||
"mode": "record",
|
||||
"repo_id": "hf_username/dataset_name",
|
||||
"dataset_root": "data/your_dataset",
|
||||
"num_episodes": 20,
|
||||
"push_to_hub": true,
|
||||
"fps": 10,
|
||||
"number_of_steps_after_success": 15
|
||||
"device": "cpu"
|
||||
}
|
||||
```
|
||||
|
||||
@@ -421,9 +727,17 @@ To use your trained reward classifier, configure the `HILSerlRobotEnvConfig` to
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
env_config = HILSerlRobotEnvConfig(
|
||||
reward_classifier_pretrained_path="path_to_your_pretrained_trained_model",
|
||||
# Other environment parameters
|
||||
config = GymManipulatorConfig(
|
||||
env=HILSerlRobotEnvConfig(
|
||||
processor=HILSerlProcessorConfig(
|
||||
reward_classifier=RewardClassifierConfig(
|
||||
pretrained_path="path_to_your_pretrained_trained_model"
|
||||
)
|
||||
),
|
||||
# Other environment parameters
|
||||
),
|
||||
dataset=DatasetConfig(...),
|
||||
mode=None # For training
|
||||
)
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
@@ -432,7 +746,18 @@ or set the argument in the json config file.
|
||||
|
||||
```json
|
||||
{
|
||||
"reward_classifier_pretrained_path": "path_to_your_pretrained_model"
|
||||
"env": {
|
||||
"processor": {
|
||||
"reward_classifier": {
|
||||
"pretrained_path": "path_to_your_pretrained_model",
|
||||
"success_threshold": 0.7,
|
||||
"success_reward": 1.0
|
||||
},
|
||||
"reset": {
|
||||
"terminate_on_success": true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
@@ -447,7 +772,7 @@ The reward classifier will automatically provide rewards based on the visual inp
|
||||
**Example Workflow for training the reward classifier**
|
||||
|
||||
1. **Create the configuration files**:
|
||||
Create the necessary json configuration files for the reward classifier and the environment. Check the examples [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/tree/main).
|
||||
Create the necessary json configuration files for the reward classifier and the environment. Check the examples [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/reward_classifier/config.json).
|
||||
|
||||
2. **Collect a dataset**:
|
||||
|
||||
@@ -472,7 +797,7 @@ The LeRobot system uses a distributed actor-learner architecture for training. T
|
||||
|
||||
**Configuration Setup**
|
||||
|
||||
Create a training configuration file (example available [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/train_config_hilserl_so100.json)). The training config is based on the main `TrainRLServerPipelineConfig` class in `lerobot/configs/train.py`.
|
||||
Create a training configuration file (example available [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/rl/train_config.json)). The training config is based on the main `TrainRLServerPipelineConfig` class in `lerobot/configs/train.py`.
|
||||
|
||||
1. Configure the policy settings (`type="sac"`, `device`, etc.)
|
||||
2. Set `dataset` to your cropped dataset
|
||||
|
||||
@@ -26,15 +26,18 @@ pip install -e ".[hilserl]"
|
||||
|
||||
## Configuration
|
||||
|
||||
To use `gym_hil` with LeRobot, you need to create a configuration file. An example is provided [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/gym_hil_env.json). Key configuration sections include:
|
||||
To use `gym_hil` with LeRobot, you need to create a configuration file. An example is provided [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/rl/gym_hil/env_config.json). Key configuration sections include:
|
||||
|
||||
### Environment Type and Task
|
||||
|
||||
```json
|
||||
{
|
||||
"type": "hil",
|
||||
"name": "franka_sim",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "gym_hil",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"fps": 10
|
||||
},
|
||||
"device": "cuda"
|
||||
}
|
||||
```
|
||||
@@ -45,28 +48,40 @@ Available tasks:
|
||||
- `PandaPickCubeGamepad-v0`: With gamepad control
|
||||
- `PandaPickCubeKeyboard-v0`: With keyboard control
|
||||
|
||||
### Gym Wrappers Configuration
|
||||
### Processor Configuration
|
||||
|
||||
```json
|
||||
"wrapper": {
|
||||
"gripper_penalty": -0.02,
|
||||
"control_time_s": 15.0,
|
||||
"use_gripper": true,
|
||||
"fixed_reset_joint_positions": [0.0, 0.195, 0.0, -2.43, 0.0, 2.62, 0.785],
|
||||
"end_effector_step_sizes": {
|
||||
"x": 0.025,
|
||||
"y": 0.025,
|
||||
"z": 0.025
|
||||
},
|
||||
"control_mode": "gamepad"
|
||||
{
|
||||
"env": {
|
||||
"processor": {
|
||||
"control_mode": "gamepad",
|
||||
"gripper": {
|
||||
"use_gripper": true,
|
||||
"gripper_penalty": -0.02
|
||||
},
|
||||
"reset": {
|
||||
"control_time_s": 15.0,
|
||||
"fixed_reset_joint_positions": [
|
||||
0.0, 0.195, 0.0, -2.43, 0.0, 2.62, 0.785
|
||||
]
|
||||
},
|
||||
"inverse_kinematics": {
|
||||
"end_effector_step_sizes": {
|
||||
"x": 0.025,
|
||||
"y": 0.025,
|
||||
"z": 0.025
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Important parameters:
|
||||
|
||||
- `gripper_penalty`: Penalty for excessive gripper movement
|
||||
- `use_gripper`: Whether to enable gripper control
|
||||
- `end_effector_step_sizes`: Size of the steps in the x,y,z axes of the end-effector
|
||||
- `gripper.gripper_penalty`: Penalty for excessive gripper movement
|
||||
- `gripper.use_gripper`: Whether to enable gripper control
|
||||
- `inverse_kinematics.end_effector_step_sizes`: Size of the steps in the x,y,z axes of the end-effector
|
||||
- `control_mode`: Set to `"gamepad"` to use a gamepad controller
|
||||
|
||||
## Running with HIL RL of LeRobot
|
||||
@@ -75,39 +90,50 @@ Important parameters:
|
||||
|
||||
To run the environment, set mode to null:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
```bash
|
||||
python -m lerobot.scripts.rl.gym_manipulator --config_path path/to/gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
### Recording a Dataset
|
||||
|
||||
To collect a dataset, set the mode to `record` whilst defining the repo_id and number of episodes to record:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "gym_hil",
|
||||
"task": "PandaPickCubeGamepad-v0"
|
||||
},
|
||||
"dataset": {
|
||||
"repo_id": "username/sim_dataset",
|
||||
"root": null,
|
||||
"task": "pick_cube",
|
||||
"num_episodes_to_record": 10,
|
||||
"replay_episode": null,
|
||||
"push_to_hub": true
|
||||
},
|
||||
"mode": "record"
|
||||
}
|
||||
```
|
||||
|
||||
```bash
|
||||
python -m lerobot.scripts.rl.gym_manipulator --config_path path/to/gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
### Training a Policy
|
||||
|
||||
To train a policy, checkout the configuration example available [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/train_gym_hil_env.json) and run the actor and learner servers:
|
||||
To train a policy, checkout the configuration example available [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/rl/gym_hil/train_config.json) and run the actor and learner servers:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
```bash
|
||||
python -m lerobot.scripts.rl.actor --config_path path/to/train_gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
In a different terminal, run the learner server:
|
||||
|
||||
<!-- prettier-ignore-start -->
|
||||
```python
|
||||
```bash
|
||||
python -m lerobot.scripts.rl.learner --config_path path/to/train_gym_hil_env.json
|
||||
```
|
||||
<!-- prettier-ignore-end -->
|
||||
|
||||
The simulation environment provides a safe and repeatable way to develop and test your Human-In-the-Loop reinforcement learning components before deploying to real robots.
|
||||
|
||||
|
||||
@@ -519,11 +519,14 @@ from lerobot.utils.control_utils import init_keyboard_listener
|
||||
from lerobot.utils.utils import log_say
|
||||
from lerobot.utils.visualization_utils import _init_rerun
|
||||
from lerobot.record import record_loop
|
||||
from lerobot.policies.factory import make_processor
|
||||
|
||||
NUM_EPISODES = 5
|
||||
FPS = 30
|
||||
EPISODE_TIME_SEC = 60
|
||||
TASK_DESCRIPTION = "My task description"
|
||||
HF_MODEL_ID = "<hf_username>/<model_repo_id>"
|
||||
HF_DATASET_ID = "<hf_username>/<eval_dataset_repo_id>"
|
||||
|
||||
# Create the robot configuration
|
||||
camera_config = {"front": OpenCVCameraConfig(index_or_path=0, width=640, height=480, fps=FPS)}
|
||||
@@ -535,7 +538,7 @@ robot_config = SO100FollowerConfig(
|
||||
robot = SO100Follower(robot_config)
|
||||
|
||||
# Initialize the policy
|
||||
policy = ACTPolicy.from_pretrained("<hf_username>/<my_policy_repo_id>")
|
||||
policy = ACTPolicy.from_pretrained(HF_MODEL_ID)
|
||||
|
||||
# Configure the dataset features
|
||||
action_features = hw_to_dataset_features(robot.action_features, "action")
|
||||
@@ -544,7 +547,7 @@ dataset_features = {**action_features, **obs_features}
|
||||
|
||||
# Create the dataset
|
||||
dataset = LeRobotDataset.create(
|
||||
repo_id="<hf_username>/eval_<dataset_repo_id>",
|
||||
repo_id=HF_DATASET_ID,
|
||||
fps=FPS,
|
||||
features=dataset_features,
|
||||
robot_type=robot.name,
|
||||
@@ -559,6 +562,12 @@ _init_rerun(session_name="recording")
|
||||
# Connect the robot
|
||||
robot.connect()
|
||||
|
||||
preprocessor, postprocessor = make_processor(
|
||||
policy_cfg=policy,
|
||||
pretrained_path=HF_MODEL_ID,
|
||||
dataset_stats=dataset.meta.stats,
|
||||
)
|
||||
|
||||
for episode_idx in range(NUM_EPISODES):
|
||||
log_say(f"Running inference, recording eval episode {episode_idx + 1} of {NUM_EPISODES}")
|
||||
|
||||
@@ -568,6 +577,8 @@ for episode_idx in range(NUM_EPISODES):
|
||||
events=events,
|
||||
fps=FPS,
|
||||
policy=policy,
|
||||
preprocessor=preprocessor,
|
||||
postprocessor=postprocessor,
|
||||
dataset=dataset,
|
||||
control_time_s=EPISODE_TIME_SEC,
|
||||
single_task=TASK_DESCRIPTION,
|
||||
|
||||
@@ -22,13 +22,38 @@ pip install -e ".[hilserl]"
|
||||
|
||||
## Teleoperate and Record a Dataset
|
||||
|
||||
To use `gym_hil` with LeRobot, you need to use a configuration file. An example config file can be found [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/env_config_gym_hil_il.json).
|
||||
To use `gym_hil` with LeRobot, you need to use a configuration file. An example config file can be found [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/sim_il/env_config.json).
|
||||
|
||||
To teleoperate and collect a dataset, we need to modify this config file and you should add your `repo_id` here: `"repo_id": "il_gym",` and `"num_episodes": 30,` and make sure you set `mode` to `record`, "mode": "record".
|
||||
To teleoperate and collect a dataset, we need to modify this config file. Here's an example configuration for imitation learning data collection:
|
||||
|
||||
If you do not have a Nvidia GPU also change `"device": "cuda"` parameter in the config file (for example to `mps` for MacOS).
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "gym_hil",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"fps": 10
|
||||
},
|
||||
"dataset": {
|
||||
"repo_id": "your_username/il_gym",
|
||||
"root": null,
|
||||
"task": "pick_cube",
|
||||
"num_episodes_to_record": 30,
|
||||
"replay_episode": null,
|
||||
"push_to_hub": true
|
||||
},
|
||||
"mode": "record",
|
||||
"device": "cuda"
|
||||
}
|
||||
```
|
||||
|
||||
By default the config file assumes you use a controller. To use your keyboard please change the envoirment specified at `"task"` in the config file and set it to `"PandaPickCubeKeyboard-v0"`.
|
||||
Key configuration points:
|
||||
|
||||
- Set your `repo_id` in the `dataset` section: `"repo_id": "your_username/il_gym"`
|
||||
- Set `num_episodes_to_record: 30` to collect 30 demonstration episodes
|
||||
- Ensure `mode` is set to `"record"`
|
||||
- If you don't have an NVIDIA GPU, change `"device": "cuda"` to `"mps"` for macOS or `"cpu"`
|
||||
- To use keyboard instead of gamepad, change `"task"` to `"PandaPickCubeKeyboard-v0"`
|
||||
|
||||
Then we can run this command to start:
|
||||
|
||||
@@ -140,9 +165,32 @@ huggingface-cli upload ${HF_USER}/il_sim_test${CKPT} \
|
||||
|
||||
## Evaluate your policy in Sim
|
||||
|
||||
To evaluate your policy we have to use the config file that can be found [here](https://huggingface.co/datasets/aractingi/lerobot-example-config-files/blob/main/eval_config_gym_hil.json).
|
||||
To evaluate your policy we have to use a configuration file. An example can be found [here](https://huggingface.co/datasets/lerobot/config_examples/resolve/main/sim_il/eval_config.json).
|
||||
|
||||
Make sure to replace the `repo_id` with the dataset you trained on, for example `pepijn223/il_sim_dataset` and replace the `pretrained_policy_name_or_path` with your model id, for example `pepijn223/il_sim_model`
|
||||
Here's an example evaluation configuration:
|
||||
|
||||
```json
|
||||
{
|
||||
"env": {
|
||||
"type": "gym_manipulator",
|
||||
"name": "gym_hil",
|
||||
"task": "PandaPickCubeGamepad-v0",
|
||||
"fps": 10
|
||||
},
|
||||
"dataset": {
|
||||
"repo_id": "your_username/il_sim_dataset",
|
||||
"dataset_root": null,
|
||||
"task": "pick_cube"
|
||||
},
|
||||
"pretrained_policy_name_or_path": "your_username/il_sim_model",
|
||||
"device": "cuda"
|
||||
}
|
||||
```
|
||||
|
||||
Make sure to replace:
|
||||
|
||||
- `repo_id` with the dataset you trained on (e.g., `your_username/il_sim_dataset`)
|
||||
- `pretrained_policy_name_or_path` with your model ID (e.g., `your_username/il_sim_model`)
|
||||
|
||||
Then you can run this command to visualize your trained policy
|
||||
|
||||
|
||||
273
docs/source/implement_your_own_processor.mdx
Normal file
273
docs/source/implement_your_own_processor.mdx
Normal file
@@ -0,0 +1,273 @@
|
||||
# Implement your own Robot Processor
|
||||
|
||||
In this tutorial, you'll learn how to implement your own Robot Processor.
|
||||
It begins by exploring the need for a custom processor, then uses the `NormalizerProcessorStep` as the running example to explain how to implement, configure, and serialize a processor. Finally, it lists all helper processors that ship with LeRobot.
|
||||
|
||||
## Why would you need a custom processor?
|
||||
|
||||
In most cases, when reading raw data from sensors or when models output actions, you need to process this data to make it compatible with your target system. For example, a common need is normalizing data ranges to make them suitable for neural networks.
|
||||
|
||||
LeRobot's `NormalizerProcessorStep` handles this crucial task:
|
||||
|
||||
```python
|
||||
# Input: raw joint positions in [0, 180] degrees
|
||||
raw_action = torch.tensor([90.0, 45.0, 135.0])
|
||||
|
||||
# After processing: normalized to [-1, 1] range for model training
|
||||
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=dataset_stats)
|
||||
normalized_result = normalizer(transition)
|
||||
# ...
|
||||
```
|
||||
|
||||
Other common processing needs include:
|
||||
|
||||
- **Device placement**: Moving tensors between CPU/GPU and converting data types
|
||||
- **Format conversion**: Transforming between different data structures
|
||||
- **Batching**: Adding/removing batch dimensions for model compatibility
|
||||
- **Safety constraints**: Applying limits to robot commands
|
||||
|
||||
```python
|
||||
# Example pipeline combining multiple processors
|
||||
pipeline = PolicyProcessorPipeline([
|
||||
RenameObservationsProcessorStep(rename_map={}),
|
||||
AddBatchDimensionProcessorStep(),
|
||||
NormalizerProcessorStep(features=features, stats=stats),
|
||||
DeviceProcessorStep(device="cuda"),
|
||||
# ...
|
||||
])
|
||||
```
|
||||
|
||||
LeRobot provides a pipeline mechanism to implement sequences of processing steps for both input data and output actions, making it easy to compose these transformations in the right order for optimal performance.
|
||||
|
||||
## How to implement your own processor?
|
||||
|
||||
We'll use the `NormalizerProcessorStep` as our main example because it demonstrates essential processor patterns including state management, configuration serialization, and tensor handling that you'll commonly need.
|
||||
|
||||
Prepare the sequence of processing steps necessary for your problem. A processor step is a class that implements the following methods:
|
||||
|
||||
- `__call__`: implements the processing step for the input transition.
|
||||
- `get_config`: gets the configuration of the processor step.
|
||||
- `state_dict`: gets the state of the processor step.
|
||||
- `load_state_dict`: loads the state of the processor step.
|
||||
- `reset`: resets the state of the processor step.
|
||||
- `feature_contract`: displays the modification to the feature space during the processor step.
|
||||
|
||||
### Implement the `__call__` method
|
||||
|
||||
The `__call__` method is the core of your processor step. It takes an `EnvTransition` and returns a modified `EnvTransition`. Here's how the `NormalizerProcessorStep` works:
|
||||
|
||||
```python
|
||||
@dataclass
|
||||
@ProcessorStepRegistry.register("normalizer_processor")
|
||||
class NormalizerProcessorStep(ProcessorStep):
|
||||
"""Normalize observations/actions using dataset statistics."""
|
||||
|
||||
features: dict[str, PolicyFeature]
|
||||
norm_map: dict[FeatureType, NormalizationMode]
|
||||
stats: dict[str, dict[str, Any]] | None = None
|
||||
eps: float = 1e-8
|
||||
_tensor_stats: dict = field(default_factory=dict, init=False, repr=False)
|
||||
|
||||
def __post_init__(self):
|
||||
"""Convert stats to tensors for efficient computation."""
|
||||
self.stats = self.stats or {}
|
||||
self._tensor_stats = to_tensor(self.stats, device=self.device, dtype=torch.float32)
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
new_transition = transition.copy()
|
||||
# Normalize observations
|
||||
# ...
|
||||
# Normalize action
|
||||
# ...
|
||||
return new_transition
|
||||
|
||||
```
|
||||
|
||||
See the full implementation in `src/lerobot/processor/normalize_processor.py` for complete details.
|
||||
|
||||
**Key principles:**
|
||||
|
||||
- **Always use `transition.copy()`** to avoid side effects
|
||||
- **Handle both observations and actions** consistently
|
||||
- **Separate config from state**: `get_config()` returns JSON-serializable params, `state_dict()` returns tensors
|
||||
- **Convert stats to tensors** in `__post_init__()` for efficient computation
|
||||
|
||||
### Configuration and State Management
|
||||
|
||||
Processors support serialization through three methods that separate configuration from tensor state. The `NormalizerProcessorStep` demonstrates this perfectly - it carries dataset statistics (tensors) in its state, and hyperparameters in its config:
|
||||
|
||||
```python
|
||||
# Continuing the NormalizerProcessorStep example...
|
||||
|
||||
def get_config(self) -> dict[str, Any]:
|
||||
"""JSON-serializable configuration (no tensors)."""
|
||||
return {
|
||||
"eps": self.eps,
|
||||
"features": {k: {"type": v.type.value, "shape": v.shape} for k, v in self.features.items()},
|
||||
"norm_map": {ft.value: nm.value for ft, nm in self.norm_map.items()},
|
||||
# ...
|
||||
}
|
||||
|
||||
def state_dict(self) -> dict[str, torch.Tensor]:
|
||||
"""Tensor state only (e.g., dataset statistics)."""
|
||||
flat: dict[str, torch.Tensor] = {}
|
||||
for key, sub in self._tensor_stats.items():
|
||||
for stat_name, tensor in sub.items():
|
||||
flat[f"{key}.{stat_name}"] = tensor.cpu() # Always save to CPU
|
||||
return flat
|
||||
|
||||
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
||||
"""Restore tensor state at runtime."""
|
||||
self._tensor_stats.clear()
|
||||
for flat_key, tensor in state.items():
|
||||
key, stat_name = flat_key.rsplit(".", 1)
|
||||
# Load to processor's configured device
|
||||
self._tensor_stats.setdefault(key, {})[stat_name] = tensor.to(
|
||||
dtype=torch.float32, device=self.device
|
||||
)
|
||||
# ...
|
||||
```
|
||||
|
||||
**Usage:**
|
||||
|
||||
```python
|
||||
# Save (e.g., inside a policy)
|
||||
config = normalizer.get_config()
|
||||
tensors = normalizer.state_dict()
|
||||
|
||||
# Restore (e.g., loading a pretrained policy)
|
||||
new_normalizer = NormalizerProcessorStep(**config)
|
||||
new_normalizer.load_state_dict(tensors)
|
||||
# Now new_normalizer has the same stats and configuration
|
||||
```
|
||||
|
||||
### Transform features
|
||||
|
||||
The `transform_features` method defines how your processor transforms feature names and shapes. This is crucial for policy configuration and debugging.
|
||||
|
||||
For `NormalizerProcessorStep`, features are typically preserved unchanged since normalization doesn't alter keys or shapes:
|
||||
|
||||
```python
|
||||
def transform_features(self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
||||
"""Normalization preserves all feature definitions."""
|
||||
return features # No changes to feature structure
|
||||
# ...
|
||||
```
|
||||
|
||||
When your processor renames or reshapes data, implement this method to reflect the mapping for downstream components. For example, a simple rename processor:
|
||||
|
||||
```python
|
||||
def transform_features(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
|
||||
# Simple renaming
|
||||
if "pixels" in features:
|
||||
features["observation.image"] = features.pop("pixels")
|
||||
|
||||
# Pattern-based renaming
|
||||
for key in list(features.keys()):
|
||||
if key.startswith("env_state."):
|
||||
suffix = key[len("env_state."):]
|
||||
features[f"observation.{suffix}"] = features.pop(key)
|
||||
# ...
|
||||
|
||||
return features
|
||||
```
|
||||
|
||||
**Key principles:**
|
||||
|
||||
- Use `features.pop(old_key)` to remove and get the old feature
|
||||
- Use `features[new_key] = old_feature` to add the renamed feature
|
||||
- Always return the modified features dictionary
|
||||
- Document transformations clearly in the docstring
|
||||
|
||||
### Using overrides
|
||||
|
||||
You can override step parameters at load-time using `overrides`. This is handy for non-serializable objects or site-specific settings. It works both in policy factories and with `DataProcessorPipeline.from_pretrained(...)`.
|
||||
|
||||
**Foundational model adaptation**: This is particularly useful when working with foundational pretrained policies where you rarely have access to the original training statistics. You can inject your own dataset statistics to adapt the normalizer to your specific robot or environment data.
|
||||
|
||||
Example: during policy evaluation on the robot, override the device and rename map.
|
||||
Use this to run a policy trained on CUDA on a CPU-only robot, or to remap camera keys when the robot uses different names than the dataset.
|
||||
|
||||
Direct usage with `from_pretrained`:
|
||||
|
||||
```python
|
||||
from lerobot.processor import RobotProcessorPipeline
|
||||
|
||||
# Load a foundational policy trained on diverse robot data
|
||||
# but adapt normalization to your specific robot/environment
|
||||
new_stats = LeRobotDataset(repo_id="username/my-dataset").meta.stats
|
||||
processor = RobotProcessorPipeline.from_pretrained(
|
||||
"huggingface/foundational-robot-policy", # Pretrained foundation model
|
||||
overrides={
|
||||
"normalizer_processor": {"stats": new_stats}, # Inject your robot's statistics
|
||||
"device_processor": {"device": "cuda:0"}, # registry name for registered steps
|
||||
"rename_processor": {"rename_map": robot_key_map}, # Map your robot's observation keys
|
||||
# ...
|
||||
},
|
||||
)
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
Based on analysis of all LeRobot processor implementations, here are the key patterns and practices:
|
||||
|
||||
### 1. **Safe Data Handling**
|
||||
|
||||
Always create copies of input data to avoid unintended side effects. Use `transition.copy()` and `observation.copy()` rather than modifying data in-place. This prevents your processor from accidentally affecting other components in the pipeline.
|
||||
|
||||
Check for required data before processing and handle missing data gracefully. If your processor expects certain keys (like `"pixels"` for image processing), validate their presence first. For optional data, use safe access patterns like `transition.get()` and handle `None` values appropriately.
|
||||
|
||||
When data validation fails, provide clear, actionable error messages that help users understand what went wrong and how to fix it.
|
||||
|
||||
### 2. **Choose Appropriate Base Classes**
|
||||
|
||||
LeRobot provides specialized base classes that reduce boilerplate code and ensure consistency. Use `ObservationProcessorStep` when you only need to modify observations, `ActionProcessorStep` for action-only processing, and `RobotActionProcessorStep` specifically for dictionary-based robot actions.
|
||||
|
||||
Only inherit directly from `ProcessorStep` when you need full control over the entire transition or when processing multiple transition components simultaneously. The specialized base classes handle the transition management for you and provide type safety.
|
||||
|
||||
### 3. **Registration and Naming**
|
||||
|
||||
Register your processors with descriptive, namespaced names using `@ProcessorStepRegistry.register()`. Use organization prefixes like `"robotics_lab/safety_clipper"` or `"acme_corp/vision_enhancer"` to avoid naming conflicts. Avoid generic names like `"processor"` or `"step"` that could clash with other implementations.
|
||||
|
||||
Good registration makes your processors discoverable and enables clean serialization/deserialization when saving and loading pipelines.
|
||||
|
||||
### 4. **State Management Patterns**
|
||||
|
||||
Distinguish between configuration parameters (JSON-serializable values) and internal state (tensors, buffers). Use dataclass fields with `init=False, repr=False` for internal state that shouldn't appear in the constructor or string representation.
|
||||
|
||||
Implement the `reset()` method to clear internal state between episodes. This is crucial for stateful processors that accumulate data over time, like moving averages or temporal filters.
|
||||
|
||||
Remember that `get_config()` should only return JSON-serializable configuration, while `state_dict()` handles tensor state separately.
|
||||
|
||||
### 5. **Input Validation and Error Handling**
|
||||
|
||||
Validate input types and shapes before processing. Check tensor properties like `dtype` and dimensions to ensure compatibility with your algorithms. For robot actions, verify that required pose components or joint values are present and within expected ranges.
|
||||
|
||||
Use early returns for edge cases where no processing is needed. Provide clear, descriptive error messages that include the expected vs. actual data types or shapes. This makes debugging much easier for users.
|
||||
|
||||
### 6. **Device and Dtype Awareness**
|
||||
|
||||
Design your processors to automatically adapt to the device and dtype of input tensors. Internal tensors (like normalization statistics) should match the input tensor's device and dtype to ensure compatibility with multi-GPU training, mixed precision, and distributed setups.
|
||||
|
||||
Implement a `to()` method that moves your processor's internal state to the specified device. Check device/dtype compatibility at runtime and automatically migrate internal state when needed. This pattern enables seamless operation across different hardware configurations without manual intervention.
|
||||
|
||||
## Conclusion
|
||||
|
||||
You now have all the tools to implement custom processors in LeRobot! The key steps are:
|
||||
|
||||
1. **Define your processor** as a dataclass with the required methods (`__call__`, `get_config`, `state_dict`, `load_state_dict`, `reset`, `transform_features`)
|
||||
2. **Register it** using `@ProcessorStepRegistry.register("name")` for discoverability
|
||||
3. **Integrate it** into a `DataProcessorPipeline` with other processing steps
|
||||
4. **Use base classes** like `ObservationProcessorStep` when possible to reduce boilerplate
|
||||
5. **Implement device/dtype awareness** to support multi-GPU and mixed precision setups
|
||||
|
||||
The processor system is designed to be modular and composable, allowing you to build complex data processing pipelines from simple, focused components. Whether you're preprocessing sensor data for training or post-processing model outputs for robot execution, custom processors give you the flexibility to handle any data transformation your robotics application requires.
|
||||
|
||||
Key principles for robust processors:
|
||||
|
||||
- **Device/dtype adaptation**: Internal tensors should match input tensors
|
||||
- **Clear error messages**: Help users understand what went wrong
|
||||
- **Base class usage**: Leverage specialized base classes to reduce boilerplate
|
||||
- **Feature contracts**: Declare data structure changes with `transform_features()`
|
||||
|
||||
Start simple, test thoroughly, and ensure your processors work seamlessly across different hardware configurations!
|
||||
314
docs/source/introduction_processors.mdx
Normal file
314
docs/source/introduction_processors.mdx
Normal file
@@ -0,0 +1,314 @@
|
||||
# Introduction to Processors
|
||||
|
||||
In robotics, there's a fundamental mismatch between the data that robots and humans produce and what machine learning models expect.
|
||||
Robots output raw sensor data like camera images and joint positions that need normalization, batching, and device placement before models can process them.
|
||||
Language instructions from humans must be tokenized into numerical representations, and different robots use different coordinate systems that need standardization.
|
||||
|
||||
The challenge extends to model outputs as well.
|
||||
Models might output end-effector positions while robots need joint-space commands, or teleoperators produce relative movements while robots expect absolute commands.
|
||||
Model predictions are often normalized and need conversion back to real-world scales.
|
||||
|
||||
Cross-domain translation adds another layer of complexity.
|
||||
Training data from one robot setup needs adaptation for deployment on different hardware, models trained with specific camera configurations must work with new arrangements, and datasets with different naming conventions need harmonization.
|
||||
|
||||
**That's where processors come in.** They serve as universal translators that bridge these gaps, ensuring seamless data flow from sensors to models to actuators.
|
||||
Processors handle all the preprocessing and postprocessing steps needed to convert raw environment data into model-ready inputs and vice versa.
|
||||
|
||||
This means that your favorite policy can be used like this:
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
from lerobot.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.policies.factory import make_pre_post_processors
|
||||
from lerobot.policies.your_policy import YourPolicy
|
||||
from lerobot.processor.pipeline import RobotProcessorPipeline, PolicyProcessorPipeline
|
||||
dataset = LeRobotDataset("hf_user/dataset", episodes=[0])
|
||||
sample = dataset[10]
|
||||
|
||||
model = YourPolicy.from_pretrained(
|
||||
"hf_user/model",
|
||||
)
|
||||
model.eval()
|
||||
model.to("cuda")
|
||||
preprocessor, postprocessor = make_pre_post_processors(model.config, pretrained_path="hf_user/model", dataset_stats=dataset.meta.stats)
|
||||
|
||||
preprocessed_sample = preprocessor(sample)
|
||||
action = model.select_action(preprocessed_sample)
|
||||
postprocessed_action = postprocessor(action)
|
||||
```
|
||||
|
||||
## What are Processors?
|
||||
|
||||
In robotics, data comes in many forms: images from cameras, joint positions from sensors, text instructions from users, and more. Each type of data requires specific transformations before a model can use it effectively. Models need this data to be:
|
||||
|
||||
- **Normalized**: Scaled to appropriate ranges for neural network processing
|
||||
- **Batched**: Organized with proper dimensions for batch processing
|
||||
- **Tokenized**: Text converted to numerical representations
|
||||
- **Device-placed**: Moved to the right hardware (CPU/GPU)
|
||||
- **Type-converted**: Cast to appropriate data types
|
||||
|
||||
Processors handle these transformations through composable, reusable steps that can be chained together into pipelines. Think of them as a modular assembly line where each station performs a specific transformation on your data.
|
||||
|
||||
## Core Concepts
|
||||
|
||||
### EnvTransition: The Universal Data Container
|
||||
|
||||
The `EnvTransition` is the fundamental data structure that flows through all processors.
|
||||
It's a typed dictionary that represents a complete robot-environment interaction:
|
||||
|
||||
- **OBSERVATION**: All sensor data (images, states, proprioception)
|
||||
- **ACTION**: The action to execute or that was executed
|
||||
- **REWARD**: Reinforcement learning signal
|
||||
- **DONE/TRUNCATED**: Episode boundary indicators
|
||||
- **INFO**: Arbitrary metadata
|
||||
- **COMPLEMENTARY_DATA**: Task descriptions, indices, padding flags, inter-step data
|
||||
|
||||
### ProcessorStep: The Building Block
|
||||
|
||||
A `ProcessorStep` is a single transformation unit that processes transitions. It's an abstract base class with two required methods:
|
||||
|
||||
```python
|
||||
from lerobot.processor import ProcessorStep, EnvTransition
|
||||
|
||||
class MyProcessorStep(ProcessorStep):
|
||||
"""Example processor step - inherit and implement abstract methods."""
|
||||
|
||||
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
||||
"""Transform the transition - REQUIRED abstract method."""
|
||||
# Your processing logic here
|
||||
return transition
|
||||
|
||||
def transform_features(self, features):
|
||||
"""Declare how this step transforms feature shapes/types - REQUIRED abstract method."""
|
||||
return features # Most processors return features unchanged
|
||||
```
|
||||
|
||||
`__call__` is the core of your processor step. It takes an `EnvTransition` and returns a modified `EnvTransition`.
|
||||
|
||||
`transform_features` is used to declare how this step transforms feature shapes/types.
|
||||
|
||||
### DataProcessorPipeline: The Generic Orchestrator
|
||||
|
||||
The `DataProcessorPipeline[TInput, TOutput]` chains multiple `ProcessorStep` instances together:
|
||||
|
||||
```python
|
||||
from lerobot.processor import RobotProcessorPipeline, PolicyProcessorPipeline
|
||||
|
||||
# For robot hardware (unbatched data)
|
||||
robot_processor = RobotProcessorPipeline[RobotAction, RobotAction](
|
||||
steps=[step1, step2, step3],
|
||||
name="robot_pipeline"
|
||||
)
|
||||
|
||||
# For model training/inference (batched data)
|
||||
policy_processor = PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
|
||||
steps=[step1, step2, step3],
|
||||
name="policy_pipeline"
|
||||
)
|
||||
```
|
||||
|
||||
## RobotProcessorPipeline vs PolicyProcessorPipeline
|
||||
|
||||
The key distinction is in the data structures they handle:
|
||||
|
||||
| Aspect | RobotProcessorPipeline | PolicyProcessorPipeline |
|
||||
| --------------- | -------------------------------------------- | ---------------------------------------- |
|
||||
| **Input** | `dict[str, Any]` - Individual robot values | `dict[str, Any]` - Batched tensors |
|
||||
| **Output** | `dict[str, Any]` - Individual robot commands | `torch.Tensor` - Policy predictions |
|
||||
| **Use Case** | Real-time robot control | Model training/inference |
|
||||
| **Data Format** | Unbatched, heterogeneous | Batched, homogeneous |
|
||||
| **Examples** | `{"joint_1": 0.5}` | `{"observation.state": tensor([[0.5]])}` |
|
||||
|
||||
**Use `RobotProcessorPipeline`** for robot hardware interfaces:
|
||||
|
||||
```python
|
||||
# Robot data structures: dict[str, Any] for observations and actions
|
||||
robot_obs: dict[str, Any] = {
|
||||
"joint_1": 0.5, # Individual joint values
|
||||
"joint_2": -0.3,
|
||||
"camera_0": image_array # Raw camera data
|
||||
}
|
||||
|
||||
robot_action: dict[str, Any] = {
|
||||
"joint_1": 0.2, # Target joint positions
|
||||
"joint_2": 0.1,
|
||||
"gripper": 0.8
|
||||
}
|
||||
```
|
||||
|
||||
**Use `PolicyProcessorPipeline`** for model training and batch processing:
|
||||
|
||||
```python
|
||||
# Policy data structures: batch dicts and tensors
|
||||
policy_batch: dict[str, Any] = {
|
||||
"observation.state": torch.tensor([[0.5, -0.3]]), # Batched states
|
||||
"observation.images.camera0": torch.tensor(...), # Batched images
|
||||
"action": torch.tensor([[0.2, 0.1, 0.8]]) # Batched actions
|
||||
}
|
||||
|
||||
policy_action: torch.Tensor = torch.tensor([[0.2, 0.1, 0.8]]) # Model output tensor
|
||||
```
|
||||
|
||||
## Converter Functions
|
||||
|
||||
LeRobot provides converter functions to bridge different data formats in `lerobot.processor.converters`. These functions handle the crucial translations between robot hardware data structures, policy model formats, and the internal `EnvTransition` representation that flows through processor pipelines.
|
||||
|
||||
| Category | Function | Description |
|
||||
| ------------------------------ | ----------------------------- | ------------------------------- |
|
||||
| **Robot Hardware Converters** | `robot_action_to_transition` | Robot dict → EnvTransition |
|
||||
| | `observation_to_transition` | Robot obs → EnvTransition |
|
||||
| | `transition_to_robot_action` | EnvTransition → Robot dict |
|
||||
| **Policy/Training Converters** | `batch_to_transition` | Batch dict → EnvTransition |
|
||||
| | `transition_to_batch` | EnvTransition → Batch dict |
|
||||
| | `policy_action_to_transition` | Policy tensor → EnvTransition |
|
||||
| | `transition_to_policy_action` | EnvTransition → Policy tensor |
|
||||
| **Utilities** | `create_transition` | Build transitions with defaults |
|
||||
| | `identity_transition` | Pass-through converter |
|
||||
|
||||
The key insight is that **robot hardware converters** work with individual values and dictionaries, while **policy/training converters** work with batched tensors and model outputs. The converter functions automatically handle the structural differences, so your processor steps can focus on the core transformations without worrying about data format compatibility.
|
||||
|
||||
## Processor Examples
|
||||
|
||||
The following examples demonstrate real-world processor configurations for policy training and inference.
|
||||
|
||||
Here is an example processor for policy training and inference:
|
||||
|
||||
```python
|
||||
# Training data preprocessing (optimized order for GPU performance)
|
||||
training_preprocessor = PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
|
||||
steps=[
|
||||
RenameObservationsProcessorStep(rename_map={}), # Standardize keys
|
||||
AddBatchDimensionProcessorStep(), # Add batch dims
|
||||
TokenizerProcessorStep(tokenizer_name="...", ...), # Tokenize language
|
||||
DeviceProcessorStep(device="cuda"), # Move to GPU first
|
||||
NormalizerProcessorStep(features=..., stats=...), # Normalize on GPU
|
||||
]
|
||||
)
|
||||
|
||||
# Model output postprocessing
|
||||
training_postprocessor = PolicyProcessorPipeline[torch.Tensor, torch.Tensor](
|
||||
steps=[
|
||||
DeviceProcessorStep(device="cpu"), # Move to CPU
|
||||
UnnormalizerProcessorStep(features=..., stats=...), # Denormalize
|
||||
]
|
||||
to_transition=policy_action_to_transition,
|
||||
to_output=transition_to_policy_action,
|
||||
)
|
||||
```
|
||||
|
||||
### An interaction between a robot and a policy with processors
|
||||
|
||||
The most common real-world scenario combines both pipeline types robot hardware generates observations that need policy processing, and policy outputs need robot-compatible postprocessing:
|
||||
|
||||
```python
|
||||
# Real deployment: Robot sensors → Model → Robot commands
|
||||
with torch.no_grad():
|
||||
while not done:
|
||||
raw_obs = robot.get_observation() # dict[str, Any]
|
||||
|
||||
# Add your robot observation to policy observation processor
|
||||
|
||||
policy_input = policy_preprocessor(raw_obs) # Batched dict
|
||||
|
||||
policy_output = policy.select_action(policy_input) # Policy tensor
|
||||
|
||||
policy_action = policy_postprocessor(policy_output)
|
||||
|
||||
# Add your robot action to policy action processor
|
||||
|
||||
robot.send_action(policy_action)
|
||||
```
|
||||
|
||||
## Feature Contracts: Shape and Type Transformation
|
||||
|
||||
Processors don't just transform data - they can also **change the data structure itself**. The `transform_features()` method declares these changes, which is crucial for dataset recording and policy creation.
|
||||
|
||||
### Why Feature Contracts Matter
|
||||
|
||||
When building datasets or policies, LeRobot needs to know:
|
||||
|
||||
- **What data fields will exist** after processing
|
||||
- **What shapes and types** each field will have
|
||||
- **How to configure models** for the expected data structure
|
||||
|
||||
```python
|
||||
# Example: A processor that adds velocity to observations
|
||||
class VelocityProcessor(ObservationProcessorStep):
|
||||
def observation(self, obs):
|
||||
new_obs = obs.copy()
|
||||
if "observation.state" in obs:
|
||||
# concatenate computed velocity field to the state
|
||||
new_obs["observation.state"] = self._compute_velocity(obs["observation.state"])
|
||||
return new_obs
|
||||
|
||||
def transform_features(self, features):
|
||||
"""Declare the new velocity field we're adding."""
|
||||
state_feature = features[PipelineFeatureType.OBSERVATION].get("observation.state")
|
||||
if state_feature:
|
||||
double_shape = (state_feature.shape[0] * 2,) if state_feature.shape else (2,)
|
||||
features[PipelineFeatureType.OBSERVATION]["observation.state"] = PolicyFeature(
|
||||
type=FeatureType.STATE, shape=double_shape
|
||||
)
|
||||
return features
|
||||
```
|
||||
|
||||
### Feature Specification Functions
|
||||
|
||||
`create_initial_features()` and `aggregate_pipeline_dataset_features()` solve a critical dataset creation problem: determining the exact final data structure before any data is processed.
|
||||
Since processor pipelines can add new features (like velocity fields), change tensor shapes (like cropping images), or rename keys, datasets need to know the complete output specification upfront to allocate proper storage and define schemas.
|
||||
These functions work together by starting with robot hardware specifications (`create_initial_features()`) then simulating the entire pipeline transformation (`aggregate_pipeline_dataset_features()`) to compute the final feature dictionary that gets passed to `LeRobotDataset.create()`, ensuring perfect alignment between what processors output and what datasets expect to store.
|
||||
|
||||
```python
|
||||
from lerobot.datasets.pipeline_features import aggregate_pipeline_dataset_features
|
||||
|
||||
# Start with robot's raw features
|
||||
initial_features = create_initial_features(
|
||||
observation=robot.observation_features, # {"joint_1.pos": float, "camera_0": (480,640,3)}
|
||||
action=robot.action_features # {"joint_1.pos": float, "gripper.pos": float}
|
||||
)
|
||||
|
||||
# Apply processor pipeline to compute final features
|
||||
final_features = aggregate_pipeline_dataset_features(
|
||||
pipeline=my_processor_pipeline,
|
||||
initial_features=initial_features,
|
||||
use_videos=True
|
||||
)
|
||||
|
||||
# Use for dataset creation
|
||||
dataset = LeRobotDataset.create(
|
||||
repo_id="my_dataset",
|
||||
features=final_features, # Knows exactly what data to expect
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
## Common Processor Steps
|
||||
|
||||
LeRobot provides many registered processor steps. Here are the most commonly used core processors:
|
||||
|
||||
### Essential Processors
|
||||
|
||||
- **`normalizer_processor`**: Normalize observations/actions using dataset statistics (mean/std or min/max)
|
||||
- **`device_processor`**: Move tensors to CPU/GPU with optional dtype conversion
|
||||
- **`to_batch_processor`**: Add batch dimensions to transitions for model compatibility
|
||||
- **`rename_observations_processor`**: Rename observation keys using mapping dictionaries
|
||||
- **`tokenizer_processor`**: Tokenize natural language task descriptions into tokens and attention masks
|
||||
|
||||
### Next Steps
|
||||
|
||||
- **[Implement Your Own Processor](implement_your_own_processor.mdx)** - Create custom processor steps
|
||||
- **[Debug Your Pipeline](debug_processor_pipeline.mdx)** - Troubleshoot and optimize pipelines
|
||||
- **[Processors for Robots and Teleoperators](processors_robots_teleop.mdx)** - Real-world integration patterns
|
||||
|
||||
## Summary
|
||||
|
||||
Processors solve the data translation problem in robotics by providing:
|
||||
|
||||
- **Modular transformations**: Composable, reusable processing steps
|
||||
- **Type safety**: Generic pipelines with compile-time checking
|
||||
- **Performance optimization**: GPU-accelerated operations
|
||||
- **Robot/Policy distinction**: Separate pipelines for different data structures
|
||||
- **Comprehensive ecosystem**: 30+ registered processors for common tasks
|
||||
|
||||
The key insight: `RobotProcessorPipeline` handles unbatched robot hardware data, while `PolicyProcessorPipeline` handles batched model data. Choose the right tool for your data structure!
|
||||
192
docs/source/phone_teleop.mdx
Normal file
192
docs/source/phone_teleop.mdx
Normal file
@@ -0,0 +1,192 @@
|
||||
# Phone
|
||||
|
||||
Use your phone (iOS or Android) to control your robot.
|
||||
|
||||
**In this guide you'll learn:**
|
||||
|
||||
- How to connect an iOS/Android phone
|
||||
- How phone pose is mapped to robot end‑effector (EE) targets
|
||||
- How to tweak safety limits, gripper control, and IK settings
|
||||
|
||||
To use phone to control your robot, install the relevant dependencies with:
|
||||
|
||||
```bash
|
||||
pip install lerobot[phone]
|
||||
```
|
||||
|
||||
## Get started
|
||||
|
||||
### Supported platforms
|
||||
|
||||
- iOS: Uses the HEBI Mobile I/O app (ARKit pose + buttons). Download the app first, open it and the examples will discover it on your network and stream the phone pose and inputs.
|
||||
- Android: Uses the `teleop` package (WebXR). When you start the Python process, it prints a local URL. Open the link on your phone, tap Start, then use Move to stream pose.
|
||||
|
||||
Links:
|
||||
|
||||
- Android WebXR library: [`teleop` on PyPI](https://pypi.org/project/teleop/)
|
||||
- iOS app: [HEBI Mobile I/O](https://docs.hebi.us/tools.html#mobile-io)
|
||||
|
||||
### Phone orientation and controls
|
||||
|
||||
- Orientation: hold the phone with the screen facing up and the top edge pointing in the same direction as the robot gripper. This ensures calibration aligns the phone’s frame with the robot frame so motion feels natural, see the image below for reference.
|
||||
- Enable/disable:
|
||||
- iOS: Hold `B1` to enable teleoperation, release to stop. The first press captures a reference pose.
|
||||
- Android: Press and hold the `Move` button, release to stop. The first press captures a reference pose.
|
||||
- Gripper control:
|
||||
- iOS: Analog input `A3` controls the gripper as velocity input.
|
||||
- Android: Buttons `A` and `B` act like increment/decrement (A opens, B closes). You can tune velocity in the `GripperVelocityToJoint` step.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/blob/main/lerobot/phone_teleop.webp" alt="Phone teleop orientation" title="Phone teleop orientation" width="60%">
|
||||
|
||||
### Step 1: Choose the platform
|
||||
|
||||
Modify the examples to use `PhoneOS.IOS` or `PhoneOS.ANDROID` in `PhoneConfig`. The API is identical across platforms, only the input source differs. All examples are under `examples/` and have `phone_so100_*.py` variants.
|
||||
|
||||
Teleoperation example:
|
||||
|
||||
```36:43:examples/phone_so100_teleop.py
|
||||
from lerobot.teleoperators.phone.config_phone import PhoneConfig, PhoneOS
|
||||
|
||||
teleop_config = PhoneConfig(phone_os=PhoneOS.IOS) # or PhoneOS.ANDROID
|
||||
teleop_device = Phone(teleop_config)
|
||||
```
|
||||
|
||||
### Step 2: Connect and calibrate
|
||||
|
||||
When `Phone(teleop_config)` is created and `connect()` is called, calibration is prompted automatically. Hold the phone in the orientation described above, then:
|
||||
|
||||
- iOS: press and hold `B1` to capture the reference pose.
|
||||
- Android: press `Move` button on the WebXR page to capture the reference pose.
|
||||
|
||||
Why calibrate? We capture the current pose so subsequent poses are expressed in a robot aligned frame. When you again press the button to enable control, the position is recaptured to avoid drift when your phone is repositioned while it was disabled.
|
||||
|
||||
### Step 3: Run an example
|
||||
|
||||
Run on of the examples scripts to teleoperate, record a dataset, replay a dataset or evaluate a policy.
|
||||
|
||||
All scripts assume you configured your robot (e.g., SO-100 follower) and set the correct serial port.
|
||||
|
||||
Additionally you need to **copy the urdf of the robot to the examples folder**. For the examples in this tutorial (Using SO100/SO101) it is highly recommended to use the urdf in the [SO-ARM100 repo](https://github.com/TheRobotStudio/SO-ARM100/blob/main/Simulation/SO101/so101_new_calib.urdf)
|
||||
|
||||
- Run this example to teleoperate:
|
||||
|
||||
```bash
|
||||
python examples/phone_to_so100/teleoperate.py
|
||||
```
|
||||
|
||||
After running the example:
|
||||
|
||||
- Android: after starting the script, open the printed local URL on your phone, tap Start, then press and hold Move.
|
||||
- iOS: open HEBI Mobile I/O first; B1 enables motion. A3 controls the gripper.
|
||||
|
||||
Additionally you can customize mapping or safety limits by editing the processor steps shown in the examples. You can also remap inputs (e.g., use a different analog input) or adapt the pipeline to other robots (e.g., LeKiwi) by modifying the input and kinematics steps. More about this in the [Processors for Robots and Teleoperators](./processors_robots_teleop.mdx) guide.
|
||||
|
||||
- Run this example to record a dataset, which saves absolute end effector observations and actions:
|
||||
|
||||
```bash
|
||||
python examples/phone_to_so100/record.py
|
||||
```
|
||||
|
||||
- Run this example to replay recorded episodes:
|
||||
|
||||
```bash
|
||||
python examples/phone_to_so100/replay.py
|
||||
```
|
||||
|
||||
- Run this example to evaluate a pretrained policy:
|
||||
|
||||
```bash
|
||||
python examples/phone_to_so100/evaluate.py
|
||||
```
|
||||
|
||||
### Important pipeline steps and options
|
||||
|
||||
- Kinematics are used in multiple steps. We use [Placo](https://github.com/Rhoban/placo) which is a wrapper around Pinocchio for handling our kinematics. We construct the kinematics object by passing the robot's URDF and target frame. We set `target_frame_name` to the gripper frame.
|
||||
|
||||
```examples/phone_to_so100/teleoperate.py
|
||||
kinematics_solver = RobotKinematics(
|
||||
urdf_path="./SO101/so101_new_calib.urdf",
|
||||
target_frame_name="gripper_frame_link",
|
||||
joint_names=list(robot.bus.motors.keys()),
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
- The `MapPhoneActionToRobotAction` step converts the calibrated phone pose and inputs into target deltas and gripper commands, below is shown what the step outputs.
|
||||
|
||||
```src/lerobot/teleoperators/phone/phone_processor.py
|
||||
action["enabled"] = enabled
|
||||
action["target_x"] = -pos[1] if enabled else 0.0
|
||||
action["target_y"] = pos[0] if enabled else 0.0
|
||||
action["target_z"] = pos[2] if enabled else 0.0
|
||||
action["target_wx"] = rotvec[1] if enabled else 0.0
|
||||
action["target_wy"] = rotvec[0] if enabled else 0.0
|
||||
action["target_wz"] = -rotvec[2] if enabled else 0.0
|
||||
action["gripper_vel"] = gripper_vel # Still send gripper action when disabled
|
||||
```
|
||||
|
||||
- The `EEReferenceAndDelta` step converts target deltas to an absolute desired EE pose, storing a reference on enable, the `end_effector_step_sizes` are the step sizes for the EE pose and can be modified to change the motion speed.
|
||||
|
||||
```examples/phone_to_so100/teleoperate.py
|
||||
EEReferenceAndDelta(
|
||||
kinematics=kinematics_solver,
|
||||
end_effector_step_sizes={"x": 0.5, "y": 0.5, "z": 0.5},
|
||||
motor_names=list(robot.bus.motors.keys()),
|
||||
use_latched_reference=True,
|
||||
),
|
||||
```
|
||||
|
||||
- The `EEBoundsAndSafety` step clamps EE motion to a workspace and checks for large ee step jumps to ensure safety. The `end_effector_bounds` are the bounds for the EE pose and can be modified to change the workspace. The `max_ee_step_m` and `max_ee_twist_step_rad` are the step limits for the EE pose and can be modified to change the safety limits.
|
||||
|
||||
```examples/phone_to_so100/teleoperate.py
|
||||
EEBoundsAndSafety(
|
||||
end_effector_bounds={"min": [-1.0, -1.0, -1.0], "max": [1.0, 1.0, 1.0]},
|
||||
max_ee_step_m=0.10,
|
||||
max_ee_twist_step_rad=0.50,
|
||||
)
|
||||
```
|
||||
|
||||
- The `GripperVelocityToJoint` step turns a velocity‑like gripper input into absolute gripper position using the current measured state. The `speed_factor` is the factor by which the velocity is multiplied.
|
||||
|
||||
```examples/phone_to_so100/teleoperate.py
|
||||
GripperVelocityToJoint(speed_factor=20.0)
|
||||
```
|
||||
|
||||
#### Different IK initial guesses
|
||||
|
||||
We use different IK initial guesses in the kinematic steps. As initial guess either the current measured joints or the previous IK solution is used.
|
||||
|
||||
- Closed loop (used in record/eval): sets `initial_guess_current_joints=True` so IK starts from the measured joints each frame.
|
||||
|
||||
```examples/phone_to_so100/record.py
|
||||
InverseKinematicsEEToJoints(
|
||||
kinematics=kinematics_solver,
|
||||
motor_names=list(robot.bus.motors.keys()),
|
||||
initial_guess_current_joints=True, # closed loop
|
||||
)
|
||||
```
|
||||
|
||||
- Open loop (used in replay): sets `initial_guess_current_joints=False` so IK continues from the previous IK solution rather than the measured state. This preserves action stability when we replay without feedback.
|
||||
|
||||
```examples/phone_to_so100/replay.py
|
||||
InverseKinematicsEEToJoints(
|
||||
kinematics=kinematics_solver,
|
||||
motor_names=list(robot.bus.motors.keys()),
|
||||
initial_guess_current_joints=False, # open loop
|
||||
)
|
||||
```
|
||||
|
||||
### Pipeline steps explained
|
||||
|
||||
- MapPhoneActionToRobotAction: converts calibrated phone pose and inputs into target deltas and a gripper command. Motion is gated by an enable signal (B1 on iOS, Move on Android).
|
||||
- EEReferenceAndDelta: latches a reference EE pose on enable and combines it with target deltas to produce an absolute desired EE pose each frame. When disabled, it keeps sending the last commanded pose.
|
||||
- EEBoundsAndSafety: clamps the EE pose to a workspace and rate‑limits jumps for safety. Also declares `action.ee.*` features.
|
||||
- InverseKinematicsEEToJoints: turns an EE pose into joint positions with IK. `initial_guess_current_joints=True` is recommended for closed‑loop control; set `False` for open‑loop replay for stability.
|
||||
- GripperVelocityToJoint: integrates a velocity‑like gripper input into an absolute gripper position using the current measured state.
|
||||
- ForwardKinematicsJointsToEE: computes `observation.state.ee.*` from observed joints for logging and training on EE state.
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
- iOS not discovered: ensure HEBI Mobile I/O is open and your laptop/phone are on the same network.
|
||||
- Android URL not reachable: check local you used `https` instead of `http`, use the exact IP printed by the script and allow your browser to enter and ignore the certificate issue.
|
||||
- Motion feels inverted: adjust the sign flips in `MapPhoneActionToRobotAction` or swap axes to match your setup.
|
||||
151
docs/source/processors_robots_teleop.mdx
Normal file
151
docs/source/processors_robots_teleop.mdx
Normal file
@@ -0,0 +1,151 @@
|
||||
# Processors for Robots and Teleoperators
|
||||
|
||||
This guide shows how to build and modify processing pipelines that connect teleoperators (e.g., phone) to robots and datasets. Pipelines standardize conversions between different action/observation spaces so you can swap teleops and robots without rewriting glue code.
|
||||
|
||||
We use the Phone to SO‑100 follower examples for concreteness, but the same patterns apply to other robots.
|
||||
|
||||
**What you'll learn**
|
||||
|
||||
- Absolute vs. relative EE control: What each means, trade‑offs, and how to choose for your task.
|
||||
- Three-pipeline pattern: How to map teleop actions → dataset actions → robot commands, and robot observations → dataset observations.
|
||||
- Adapters (`to_transition` / `to_output`): How these convert raw dicts to `EnvTransition` and back to reduce boilerplate.
|
||||
- Dataset feature contracts: How steps declare features via `transform_features(...)`, and how to aggregate/merge them for recording.
|
||||
- Choosing a representation: When to store joints, absolute EE poses, or relative EE deltas—and how that affects training.
|
||||
- Pipeline customization guidance: How to swap robots/URDFs safely and tune bounds, step sizes, and options like IK initialization.
|
||||
|
||||
### Absolute vs relative EE control
|
||||
|
||||
The examples in this guide use absolute end effector (EE) poses because they are easy to reason about. In practice, relative EE deltas or joint position are often preferred as learning features.
|
||||
|
||||
With processors, you choose the learning features you want to use for your policy. This could be joints positions/velocities, absolute EE, or relative EE positions. You can also choose to store other features, such as joint torques, motor currents, etc.
|
||||
|
||||
## Three pipelines
|
||||
|
||||
We often compose three pipelines. Depending on your setup, some can be empty if action and observation spaces already match.
|
||||
Each of these pipelines handle different conversions between different action and observation spaces. Below is a quick explanation of each pipeline.
|
||||
|
||||
1. Pipeline 1: Teleop action space → dataset action space (phone pose → EE targets)
|
||||
2. Pipeline 2: Dataset action space → robot command space (EE targets → joints)
|
||||
3. Pipeline 3: Robot observation space → dataset observation space (joints → EE pose)
|
||||
|
||||
Below is an example of the three pipelines that we use in the phone to SO-100 follower examples:
|
||||
|
||||
```69:90:examples/phone_so100_record.py
|
||||
phone_to_robot_ee_pose_processor = RobotProcessorPipeline[RobotAction, RobotAction]( # teleop -> dataset action
|
||||
steps=[
|
||||
MapPhoneActionToRobotAction(platform=teleop_config.phone_os),
|
||||
EEReferenceAndDelta(
|
||||
kinematics=kinematics_solver, end_effector_step_sizes={"x": 0.5, "y": 0.5, "z": 0.5}, motor_names=list(robot.bus.motors.keys()),
|
||||
),
|
||||
EEBoundsAndSafety(
|
||||
end_effector_bounds={"min": [-1.0, -1.0, -1.0], "max": [1.0, 1.0, 1.0]}, max_ee_step_m=0.20, max_ee_twist_step_rad=0.50,
|
||||
),
|
||||
GripperVelocityToJoint(),
|
||||
],
|
||||
to_transition=robot_action_to_transition,
|
||||
to_output=transition_to_robot_action,
|
||||
)
|
||||
|
||||
robot_ee_to_joints_processor = RobotProcessorPipeline[RobotAction, RobotAction]( # dataset action -> robot
|
||||
steps=[
|
||||
InverseKinematicsEEToJoints(
|
||||
kinematics=kinematics_solver, motor_names=list(robot.bus.motors.keys()), initial_guess_current_joints=True,
|
||||
),
|
||||
],
|
||||
to_transition=robot_action_to_transition,
|
||||
to_output=transition_to_robot_action,
|
||||
)
|
||||
|
||||
robot_joints_to_ee_pose = RobotProcessorPipeline[RobotObservation, RobotObservation]( # robot obs -> dataset obs
|
||||
steps=[
|
||||
ForwardKinematicsJointsToEE(kinematics=kinematics_solver, motor_names=list(robot.bus.motors.keys()))
|
||||
],
|
||||
to_transition=observation_to_transition,
|
||||
to_output=transition_to_observation,
|
||||
)
|
||||
```
|
||||
|
||||
## Why to_transition / to_output
|
||||
|
||||
To convert from robot/teleoperator to pipeline and back, we use the `to_transition` and `to_output` pipeline adapters.
|
||||
They standardize conversions to reduce boilerplate code, and form the bridge between the robot and teleoperators raw dictionaries and the pipeline’s `EnvTransition` format.
|
||||
In the phone to SO-100 follower examples we use the following adapters:
|
||||
|
||||
- `robot_action_to_transition`: transforms the teleop action dict to a pipeline transition.
|
||||
- `transition_to_robot_action`: transforms the pipeline transition to a robot action dict.
|
||||
- `observation_to_transition`: transforms the robot observation dict to a pipeline transition.
|
||||
- `transition_to_observation`: transforms the pipeline transition to a observation dict.
|
||||
|
||||
Checkout [src/lerobot/processor/converters.py](https://github.com/huggingface/lerobot/blob/main/src/lerobot/processor/converters.py) for more details.
|
||||
|
||||
## Dataset feature contracts
|
||||
|
||||
Dataset features are determined by the keys saved in the dataset. Each step can declare what features it modifies in a contract called `transform_features(...)`. Once you build a processor, the processor can then aggregate all of these features with `aggregate_pipeline_dataset_features()` and merge multiple feature dicts with `combine_feature_dicts(...)`.
|
||||
|
||||
Below is and example of how we declare features with the `transform_features` method in the phone to SO-100 follower examples:
|
||||
|
||||
```src/lerobot/robots/so100_follower/robot_kinematic_processor.py
|
||||
def transform_features(
|
||||
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
||||
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
||||
# We only use the ee pose in the dataset, so we don't need the joint positions
|
||||
for n in self.motor_names:
|
||||
features[PipelineFeatureType.ACTION].pop(f"{n}.pos", None)
|
||||
# We specify the dataset features of this step that we want to be stored in the dataset
|
||||
for k in ["x", "y", "z", "wx", "wy", "wz", "gripper_pos"]:
|
||||
features[PipelineFeatureType.ACTION][f"ee.{k}"] = PolicyFeature(
|
||||
type=FeatureType.STATE, shape=(1,)
|
||||
)
|
||||
return features
|
||||
```
|
||||
|
||||
Here we declare what PolicyFeatures we modify in this step, so we know what features we can expect when we run the processor. These features can then be aggregated and used to create the dataset features.
|
||||
|
||||
Below is an example of how we aggregate and merge features in the phone to SO-100 record example:
|
||||
|
||||
```121:145:examples/phone_so100_record.py
|
||||
features=combine_feature_dicts(
|
||||
# Run the feature contract of the pipelines
|
||||
# This tells you how the features would look like after the pipeline steps
|
||||
aggregate_pipeline_dataset_features(
|
||||
pipeline=phone_to_robot_ee_pose_processor,
|
||||
initial_features=create_initial_features(action=phone.action_features), # <- Action features we can expect, these come from our teleop device (phone) and action processor
|
||||
use_videos=True,
|
||||
),
|
||||
aggregate_pipeline_dataset_features(
|
||||
pipeline=robot_joints_to_ee_pose,
|
||||
initial_features=create_initial_features(observation=robot.observation_features), # <- Observation features we can expect, these come from our robot and observation processor
|
||||
use_videos=True,
|
||||
patterns=["observation.state.ee"], # <- Here you could optionally filter the features we want to store in the dataset, with a specific pattern
|
||||
|
||||
),
|
||||
),
|
||||
```
|
||||
|
||||
How it works:
|
||||
|
||||
- `aggregate_pipeline_dataset_features(...)`: applies `transform_features` across the pipeline and filters by patterns (images included when `use_videos=True`, and state features included when `patterns` is specified).
|
||||
- `combine_feature_dicts(...)`: combine multiple feature dicts.
|
||||
- Recording with `record_loop(...)` uses `build_dataset_frame(...)` to build frames consistent with `dataset.features` before we call `add_frame(...)` to add the frame to the dataset.
|
||||
|
||||
## Guidance when customizing robot pipelines
|
||||
|
||||
You can store any of the following features as your action/observation space:
|
||||
|
||||
- Joint positions
|
||||
- Absolute EE poses
|
||||
- Relative EE deltas
|
||||
- Other features: joint velocity, torques, etc.
|
||||
|
||||
Pick what you want to use for your policy action and observation space and configure/modify the pipelines and steps accordingly.
|
||||
|
||||
### Different robots
|
||||
|
||||
- You can easily reuse pipelines, for example to use another robot with phone teleop, modify the examples and swap the robot `RobotKinematics` (URDF) and `motor_names` to use your own robot with Phone teleop. Additionally you should ensure `target_frame_name` points to your gripper/wrist.
|
||||
|
||||
### Safety first
|
||||
|
||||
- When changing pipelines, start with tight bounds, implement safety steps when working with real robots.
|
||||
- Its advised to start with simulation first and then move to real robots.
|
||||
|
||||
Thats it! We hope this guide helps you get started with customizing your robot pipelines, If you run into any issues at any point, jump into our [Discord community](https://discord.com/invite/s3KuuzsPFb) for support.
|
||||
Reference in New Issue
Block a user