feat(processors): use pipelines across the codebase (#1452)

* Refactor observation preprocessing to use a modular pipeline system

- Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations.
- Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline.
- Added tests for the new processing components and ensured they match the original functionality.
- Removed hardcoded logic in favor of a more flexible, composable architecture.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Refactor observation processing and improve modularity

- Updated `ObservationProcessor` to enhance the modular design for processing observations.
- Cleaned up imports and improved code readability by removing unnecessary lines and comments.
- Ensured backward compatibility while integrating new processing components.
- Added tests to validate the functionality of the updated processing architecture.

* Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability.

* Refactor processing architecture to use RobotProcessor

- Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity.
- Introduced ProcessorStepRegistry for better management of processing steps.
- Updated relevant documentation and tests to reflect the new processing structure.
- Enhanced the save/load functionality to support the new processor design.
- Added a model card template for RobotProcessor to facilitate sharing and documentation.

* Add RobotProcessor tutorial to documentation

- Introduced a new tutorial on using RobotProcessor for preprocessing robot data.
- Added a section in the table of contents for easy navigation to the new tutorial.
- The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add normalization processor and related components

- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Enhance processing architecture with new components

- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.

* chore (docs): add docstring for processor

* fix (test): test factory

* fix(test): policies

* Update tests/processor/test_observation_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* chore(test): add suggestion made by copilot regarding numpy test

* fix(test): import issue

* Refactor normalization components and update tests

- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.

* chore (docstrin):Improve docstring for NormalizerProcessor

* feat (device processor): Implement device processor

* chore (batch handling): Enhance processing components with batch conversion utilities

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(test): linting issue

* chore (output format): improves output format

* chore (type): add typing for multiprocess envs

* feat (overrides): Implement support for loading processors with parameter overrides

- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.

* chore(normalization): addressing comments from copilot

* chore(learner): nit comment from copilot

* feat(pipeline): Enhance step_through method to support both tuple and dict inputs

* refactor(pipeline): Simplify observation and padding data handling in batch transitions

* Apply suggestions from code review

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Transition from tuple to dictionary format for EnvTransition

- Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability.
- Replaced instances of TransitionIndex with TransitionKey for accessing transition components.
- Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase.

* refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling

- Introduced constants for observation keys to enhance readability.
- Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly.
- Updated the environment state and agent position assignments to use the new constants, improving maintainability.

* feat(pipeline): Add hook unregistration functionality and enhance documentation

- Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management.
- Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks.
- Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks.

* refactor(pipeline): Clarify hook behavior and improve documentation

- Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability.
- Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions.
- Enhanced documentation to clearly outline the purpose of hooks and their execution semantics.
- Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method.

* feat(pipeline): Add __repr__ method to RobotProcessor for improved readability

- Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed.
- Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values.
- Ensured that the representation handles long lists of steps with truncation for better readability.

* chore(pipeline): Move _CFG_NAME along other class member

* refactor(pipeline): Utilize get_safe_torch_device for device assignment

- Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling.
- This change enhances code readability and maintains consistency in device management across the RobotProcessor class.

* refactor(pipeline): Enhance state filename generation and profiling method

- Updated state filename generation to use the registry name when available, improving clarity in saved files.
- Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling.
- Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results.

* chore(doc): address pip install commant lerobot that not exist yet

* feat(pipeline): Enhance configuration filename handling and state file naming

- Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default.
- Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved.
- Added automatic detection for configuration files when loading from a directory, with error handling for multiple files.
- Updated tests to validate new features, including custom filenames and automatic config detection.

* refactor(pipeline): Improve state file naming conventions for clarity and uniqueness

- Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory.
- Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts.
- Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files.

* docs(pipeline): Add clarification for repo name sanitization process

* Feat/pipeline add feature contract (#1637)

* Add feature contract to pipelinestep and pipeline

* Add tests

* Add processor tests

* PR feedback

* encorperate pr feedback

* type in doc

* oops

* docs(pipeline): Clarify transition handling and hook behavior

- Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats.
- Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change.
- Enhanced test assertions to verify the structure of results and the correctness of processing steps.

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* refactor(pipeline): Remove model card generation and streamline processor methods

- Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template.
- Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters.
- Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability.

* refactor(observation): Streamline observation preprocessing and remove unused processor methods

- Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting.
- Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow.
- Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script.

* refactor(pipeline): Rename parameters for clarity and enhance save/load functionality

- Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path.
- Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names.
- Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability.

* refactor(pipeline): minor improvements (#1684)

* chore(pipeline): remove unused features + device torch + envtransition keys

* refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor

* refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code

* test(pipeline): fix broken test after refactors

* docs(pipeline): update docstrings VanillaObservationProcessor

* chore(pipeline): move None check to base pipeline classes

* feat(processors): Introduce processors for various policy types

- Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`.
- Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps.
- Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity.
- Enhanced test coverage to validate the integration of new processors with existing policy configurations.

* refactor(learner): Remove normalization from cached image features retrieval

- Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls.
- This change enhances clarity and aligns with the recent updates to policy processors.

* refactor(policies): Remove unnormalization step from action predictions

- Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction.
- This change improves code clarity and aligns with recent updates to policy processors.

* feat(train): Integrate preprocessor into training pipeline

* refactor(train): Update preprocessor initialization to include dataset statistics

* refactor(policies): Enhance processor creation and add NaN detection hook

* feat(record): Integrate RobotProcessor into recording loop and update policy handling

- Added support for RobotProcessor in the record_loop function to enhance data processing capabilities.
- Updated the logic to reset both policy and processor when provided, ensuring proper state management.
- Modified action prediction to utilize the processor, improving the overall functionality of the recording process.
- Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities.

* feat(migration): Add script for migrating policy models with normalization layers

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models

- Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference.
- Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture.
- Refined the extraction and removal of normalization statistics and layers, streamlining the migration process.
- Improved error handling for missing mandatory configuration fields during model instantiation.

* feat(migrate): Add model card generation and saving to migration script

- Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags.
- Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility.
- Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub.

* feat(processor): Introduce ToBatchProcessor for handling observation batching

- Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing.
- Implemented functionality to add batch dimensions to state and image observations as needed.
- Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types.
- Ensured compatibility with existing transition keys and maintained the integrity of non-observation data.

* feat(processors): Add ToBatchProcessor to multiple policy processors

- Integrated ToBatchProcessor into various policy processors to handle observation batching.
- Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality.
- Ensured consistency across all processor implementations for improved data handling.

* refactor(factory): Remove unused imports and NaN detection hook from processor creation

* feat(batch_processor): Enhance ToBatchProcessor to handle action batching

- Updated ToBatchProcessor to add batch dimensions to actions in addition to observations.
- Implemented separate methods for processing observations and actions, improving code readability.
- Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration

- Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration.
- Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation.
- Refactored the loading of pretrained processors to utilize the new configuration options.

* refactor(factory): Clean up imports in factory.py

- Removed unused import of IdentityProcessor to streamline the code.

* feat(migrate): Extend load_model_from_hub to include train configuration

- Updated load_model_from_hub to return the train configuration alongside the model state_dict and config.
- Modified main function to handle the additional train configuration when loading models from both the hub and local paths.
- Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy.

* refactor(record): Rename processor parameters and update processing logic

- Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity.
- Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow.
- Ensured compatibility with existing functionality while improving code readability.

* feat(batch_processor): Add task field processing to ToBatchProcessor

- Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference.
- Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings.
- Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data.

* feat(normalization): Implement IDENTITY mode for normalization and unnormalization

- Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified.
- Updated processing logic to check normalization modes and handle missing statistics gracefully.
- Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios.
- Improved error handling for unsupported normalization modes.

* fix(rebase): remove residual normalization layer:

* refactor(diffusion): remove normalization layer from input processing

* refactor(normalization): Remove unused state dict transformation methods and streamline imports

- Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process.
- Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging.
- Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation.
- Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality.

* refactor(normalization): Clean up imports in normalize_processor.py

* feat(batch_processor): Add feature_contract method to ToBatchProcessor

- Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor.
- This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs.

* fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feature(pipeline): port tokenizer pipeline for VLA (#1645)

* feat(tokenizer): Introduce TokenizerProcessor for text tokenization

- Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer.
- Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings.
- Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor.
- Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor.

* feat(language): Enhance language processing in TokenizerProcessor

- Added OBS_LANGUAGE constant to define the observation language key.
- Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature.
- Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization.
- Modified tests to validate the integration of language tokens and attention masks in the observation structure.

* feat(tokenizer): Add padding configuration to TokenizerProcessor

- Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction.
- Updated the `make_pi0_processor` function to include the new padding configuration.
- Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios.

* feat(processor): Add state management methods to Pi0NewLineProcessor

* feat(normalization): Track normalization and unnormalization info in complementary data

- Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes.
- Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions.
- Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys.

* feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs

- Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations.
- Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization.

* feat(processors): Integrate RenameProcessor into various processor configurations

- Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency.
- Updated the input steps to ensure compatibility with the new RenameProcessor integration.

* feat(smolvla): Refactor language processing and introduce new line processor (#1658)

- Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant.
- Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility.
- Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling.

* feture(policies): add device processor (#1659)

* feat(processors): Integrate DeviceProcessor into multiple processor configurations

- Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines.
- Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* feat(processor): Enhance DeviceProcessor with float dtype conversion

- Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types.
- Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype.
- Refactored tensor processing logic to streamline device movement and dtype conversion.
- Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios.

* feat(policies): Add new line processors and update module exports

* feat(processor): Enhance batch and device processors to handle index and task_index fields

- Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors.
- Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged.
- Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation.

* refactor(processors): Standardize processor naming conventions

- Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format.
- Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme.
- Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability.

* refactor(factory): Update processor configuration and type hints

- Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety.
- Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility.
- Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations.
- Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling.

* refactor(factory, pi0fast): Update processor function names and parameters

- Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency.
- Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions.

* fix(train.py) push postprocessor with preprocessor
- Add preprocesser policy overrides for device and rename_map
- Add rename_map to DatasetRecordConfig (record.py)

* refactor(device_processor): Update device handling and improve type hints

- Changed device attribute type from torch.device to str for better clarity.
- Introduced a private _device attribute to store the actual torch.device instance.
- Updated tests to conditionally check for CUDA availability, ensuring compatibility across different environments.
- Refactored device-related assertions in tests to use a consistent approach for device type verification.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* test(tokenizer_processor): Add require_package decorator for transformers

- Introduced @require_package("transformers") decorator in multiple test functions to ensure the transformers package is available before running tests.
- This change enhances test reliability by preventing failures due to missing dependencies.

* refactor(migrate_policy_normalization): Enhance preprocessor and postprocessor structure

- Introduced RenameProcessor in the preprocessor to handle renaming features.
- Combined input and output features in a single NormalizerProcessor for improved efficiency.
- Updated RobotProcessor initialization to clarify step naming for preprocessor and postprocessor.
- Added DeviceProcessor to both preprocessor and postprocessor for better device management.

* Integrate pipeline and add phone teleop (#1681)

* Add normalization processor and related components

- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Enhance processing architecture with new components

- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.

* chore (docs): add docstring for processor

* fix (test): test factory

* fix(test): policies

* Update tests/processor/test_observation_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* chore(test): add suggestion made by copilot regarding numpy test

* fix(test): import issue

* Refactor normalization components and update tests

- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.

* chore (docstrin):Improve docstring for NormalizerProcessor

* feat (device processor): Implement device processor

* chore (batch handling): Enhance processing components with batch conversion utilities

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(test): linting issue

* chore (output format): improves output format

* chore (type): add typing for multiprocess envs

* feat (overrides): Implement support for loading processors with parameter overrides

- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.

* chore(normalization): addressing comments from copilot

* chore(learner): nit comment from copilot

* feat(pipeline): Enhance step_through method to support both tuple and dict inputs

* refactor(pipeline): Simplify observation and padding data handling in batch transitions

* Apply suggestions from code review

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions

* fix(ci): temporary fix on dataset deps version

* feat(processors): Introduce processors for various policy types

- Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`.
- Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps.
- Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity.
- Enhanced test coverage to validate the integration of new processors with existing policy configurations.

* refactor(learner): Remove normalization from cached image features retrieval

- Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls.
- This change enhances clarity and aligns with the recent updates to policy processors.

* refactor(policies): Remove unnormalization step from action predictions

- Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction.
- This change improves code clarity and aligns with recent updates to policy processors.

* feat(train): Integrate preprocessor into training pipeline

* refactor(train): Update preprocessor initialization to include dataset statistics

* refactor(policies): Enhance processor creation and add NaN detection hook

* refactor(train): Update memory pinning logic for mps compatibility

* feat: initial commit phone teleop

* ugly delta control

* use quaternion

* Refactor observation preprocessing to use a modular pipeline system

- Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations.
- Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline.
- Added tests for the new processing components and ensured they match the original functionality.
- Removed hardcoded logic in favor of a more flexible, composable architecture.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Refactor observation processing and improve modularity

- Updated `ObservationProcessor` to enhance the modular design for processing observations.
- Cleaned up imports and improved code readability by removing unnecessary lines and comments.
- Ensured backward compatibility while integrating new processing components.
- Added tests to validate the functionality of the updated processing architecture.

* Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability.

* Refactor processing architecture to use RobotProcessor

- Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity.
- Introduced ProcessorStepRegistry for better management of processing steps.
- Updated relevant documentation and tests to reflect the new processing structure.
- Enhanced the save/load functionality to support the new processor design.
- Added a model card template for RobotProcessor to facilitate sharing and documentation.

* Add RobotProcessor tutorial to documentation

- Introduced a new tutorial on using RobotProcessor for preprocessing robot data.
- Added a section in the table of contents for easy navigation to the new tutorial.
- The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add normalization processor and related components

- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Enhance processing architecture with new components

- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.

* chore (docs): add docstring for processor

* fix (test): test factory

* fix(test): policies

* Update tests/processor/test_observation_processor.py

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* chore(test): add suggestion made by copilot regarding numpy test

* fix(test): import issue

* Refactor normalization components and update tests

- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.

* chore (docstrin):Improve docstring for NormalizerProcessor

* feat (device processor): Implement device processor

* chore (batch handling): Enhance processing components with batch conversion utilities

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(test): linting issue

* chore (output format): improves output format

* chore (type): add typing for multiprocess envs

* feat (overrides): Implement support for loading processors with parameter overrides

- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.

* chore(normalization): addressing comments from copilot

* chore(learner): nit comment from copilot

* feat(pipeline): Enhance step_through method to support both tuple and dict inputs

* refactor(pipeline): Simplify observation and padding data handling in batch transitions

* Apply suggestions from code review

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Transition from tuple to dictionary format for EnvTransition

- Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability.
- Replaced instances of TransitionIndex with TransitionKey for accessing transition components.
- Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase.

* refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling

- Introduced constants for observation keys to enhance readability.
- Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly.
- Updated the environment state and agent position assignments to use the new constants, improving maintainability.

* feat(pipeline): Add hook unregistration functionality and enhance documentation

- Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management.
- Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks.
- Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks.

* refactor(pipeline): Clarify hook behavior and improve documentation

- Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability.
- Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions.
- Enhanced documentation to clearly outline the purpose of hooks and their execution semantics.
- Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method.

* feat(pipeline): Add __repr__ method to RobotProcessor for improved readability

- Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed.
- Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values.
- Ensured that the representation handles long lists of steps with truncation for better readability.

* chore(pipeline): Move _CFG_NAME along other class member

* refactor(pipeline): Utilize get_safe_torch_device for device assignment

- Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling.
- This change enhances code readability and maintains consistency in device management across the RobotProcessor class.

* refactor(pipeline): Enhance state filename generation and profiling method

- Updated state filename generation to use the registry name when available, improving clarity in saved files.
- Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling.
- Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results.

* chore(doc): address pip install commant lerobot that not exist yet

* feat(pipeline): Enhance configuration filename handling and state file naming

- Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default.
- Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved.
- Added automatic detection for configuration files when loading from a directory, with error handling for multiple files.
- Updated tests to validate new features, including custom filenames and automatic config detection.

* refactor(pipeline): Improve state file naming conventions for clarity and uniqueness

- Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory.
- Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts.
- Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files.

* docs(pipeline): Add clarification for repo name sanitization process

* feat(processors): Introduce processors for various policy types

- Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`.
- Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps.
- Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity.
- Enhanced test coverage to validate the integration of new processors with existing policy configurations.

* refactor(learner): Remove normalization from cached image features retrieval

- Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls.
- This change enhances clarity and aligns with the recent updates to policy processors.

* refactor(policies): Remove unnormalization step from action predictions

- Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction.
- This change improves code clarity and aligns with recent updates to policy processors.

* feat(train): Integrate preprocessor into training pipeline

* refactor(train): Update preprocessor initialization to include dataset statistics

* refactor(policies): Enhance processor creation and add NaN detection hook

* feat(record): Integrate RobotProcessor into recording loop and update policy handling

- Added support for RobotProcessor in the record_loop function to enhance data processing capabilities.
- Updated the logic to reset both policy and processor when provided, ensuring proper state management.
- Modified action prediction to utilize the processor, improving the overall functionality of the recording process.
- Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities.

* feat(migration): Add script for migrating policy models with normalization layers

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models

- Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference.
- Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture.
- Refined the extraction and removal of normalization statistics and layers, streamlining the migration process.
- Improved error handling for missing mandatory configuration fields during model instantiation.

* feat(migrate): Add model card generation and saving to migration script

- Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags.
- Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility.
- Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub.

* feat(processor): Introduce ToBatchProcessor for handling observation batching

- Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing.
- Implemented functionality to add batch dimensions to state and image observations as needed.
- Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types.
- Ensured compatibility with existing transition keys and maintained the integrity of non-observation data.

* feat(processors): Add ToBatchProcessor to multiple policy processors

- Integrated ToBatchProcessor into various policy processors to handle observation batching.
- Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality.
- Ensured consistency across all processor implementations for improved data handling.

* refactor(factory): Remove unused imports and NaN detection hook from processor creation

* feat(batch_processor): Enhance ToBatchProcessor to handle action batching

- Updated ToBatchProcessor to add batch dimensions to actions in addition to observations.
- Implemented separate methods for processing observations and actions, improving code readability.
- Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration

- Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration.
- Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation.
- Refactored the loading of pretrained processors to utilize the new configuration options.

* refactor(factory): Clean up imports in factory.py

- Removed unused import of IdentityProcessor to streamline the code.

* feat(migrate): Extend load_model_from_hub to include train configuration

- Updated load_model_from_hub to return the train configuration alongside the model state_dict and config.
- Modified main function to handle the additional train configuration when loading models from both the hub and local paths.
- Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy.

* refactor(record): Rename processor parameters and update processing logic

- Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity.
- Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow.
- Ensured compatibility with existing functionality while improving code readability.

* feat(batch_processor): Add task field processing to ToBatchProcessor

- Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference.
- Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings.
- Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data.

* feat(normalization): Implement IDENTITY mode for normalization and unnormalization

- Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified.
- Updated processing logic to check normalization modes and handle missing statistics gracefully.
- Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios.
- Improved error handling for unsupported normalization modes.

* fix(rebase): remove residual normalization layer:

* refactor(diffusion): remove normalization layer from input processing

* Add debug + calib

* cleanup

* Add pipeline

* fix int

* Add record example

* nit

* Add feature contract to pipelinestep and pipeline

* Add tests

* Add processor tests

* PR feedback

* encorperate pr feedback

* type in doc

* oops

* cleaned up steps and integrated pipeline with feature_contract

* refactor steps and robot to pipeline

* cleanup pipeline

* cleanup code further

* make it run

* feat(processors): Introduce processors for various policy types

- Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`.
- Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps.
- Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity.
- Enhanced test coverage to validate the integration of new processors with existing policy configurations.

* refactor(learner): Remove normalization from cached image features retrieval

- Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls.
- This change enhances clarity and aligns with the recent updates to policy processors.

* refactor(policies): Remove unnormalization step from action predictions

- Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction.
- This change improves code clarity and aligns with recent updates to policy processors.

* feat(train): Integrate preprocessor into training pipeline

* refactor(train): Update preprocessor initialization to include dataset statistics

* refactor(policies): Enhance processor creation and add NaN detection hook

* feat(record): Integrate RobotProcessor into recording loop and update policy handling

- Added support for RobotProcessor in the record_loop function to enhance data processing capabilities.
- Updated the logic to reset both policy and processor when provided, ensuring proper state management.
- Modified action prediction to utilize the processor, improving the overall functionality of the recording process.
- Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities.

* feat(migration): Add script for migrating policy models with normalization layers

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models

- Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference.
- Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture.
- Refined the extraction and removal of normalization statistics and layers, streamlining the migration process.
- Improved error handling for missing mandatory configuration fields during model instantiation.

* feat(migrate): Add model card generation and saving to migration script

- Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags.
- Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility.
- Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub.

* feat(processor): Introduce ToBatchProcessor for handling observation batching

- Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing.
- Implemented functionality to add batch dimensions to state and image observations as needed.
- Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types.
- Ensured compatibility with existing transition keys and maintained the integrity of non-observation data.

* feat(processors): Add ToBatchProcessor to multiple policy processors

- Integrated ToBatchProcessor into various policy processors to handle observation batching.
- Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality.
- Ensured consistency across all processor implementations for improved data handling.

* refactor(factory): Remove unused imports and NaN detection hook from processor creation

* feat(batch_processor): Enhance ToBatchProcessor to handle action batching

- Updated ToBatchProcessor to add batch dimensions to actions in addition to observations.
- Implemented separate methods for processing observations and actions, improving code readability.
- Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration

- Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration.
- Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation.
- Refactored the loading of pretrained processors to utilize the new configuration options.

* refactor(factory): Clean up imports in factory.py

- Removed unused import of IdentityProcessor to streamline the code.

* feat(migrate): Extend load_model_from_hub to include train configuration

- Updated load_model_from_hub to return the train configuration alongside the model state_dict and config.
- Modified main function to handle the additional train configuration when loading models from both the hub and local paths.
- Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy.

* refactor(record): Rename processor parameters and update processing logic

- Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity.
- Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow.
- Ensured compatibility with existing functionality while improving code readability.

* feat(batch_processor): Add task field processing to ToBatchProcessor

- Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference.
- Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings.
- Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data.

* feat(normalization): Implement IDENTITY mode for normalization and unnormalization

- Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified.
- Updated processing logic to check normalization modes and handle missing statistics gracefully.
- Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios.
- Improved error handling for unsupported normalization modes.

* fix(rebase): remove residual normalization layer:

* refactor(diffusion): remove normalization layer from input processing

* refactor(normalization): Remove unused state dict transformation methods and streamline imports

- Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process.
- Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging.
- Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation.
- Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality.

* refactor(normalization): Clean up imports in normalize_processor.py

* feat(batch_processor): Add feature_contract method to ToBatchProcessor

- Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor.
- This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs.

* fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(tokenizer): Introduce TokenizerProcessor for text tokenization

- Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer.
- Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings.
- Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor.
- Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor.

* feat(language): Enhance language processing in TokenizerProcessor

- Added OBS_LANGUAGE constant to define the observation language key.
- Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature.
- Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization.
- Modified tests to validate the integration of language tokens and attention masks in the observation structure.

* feat(tokenizer): Add padding configuration to TokenizerProcessor

- Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction.
- Updated the `make_pi0_processor` function to include the new padding configuration.
- Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios.

* feat(processor): Add state management methods to Pi0NewLineProcessor

* feat(normalization): Track normalization and unnormalization info in complementary data

- Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes.
- Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions.
- Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys.

* feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs

- Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations.
- Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization.

* feat(processors): Integrate RenameProcessor into various processor configurations

- Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency.
- Updated the input steps to ensure compatibility with the new RenameProcessor integration.

* Do some todos and cleanup

* change feature_contract to dataset_features

* use one method for conversion pipeline output to add_frame dict and use base processors where possible

* Add back in and use record_loop

* update todo

* rename to_dataset_frame

* feat(smolvla): Refactor language processing and introduce new line processor (#1658)

- Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant.
- Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility.
- Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling.

* feat(processors): Integrate DeviceProcessor into multiple processor configurations

- Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines.
- Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* fix reference frame

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* feat(processor): Enhance DeviceProcessor with float dtype conversion

- Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types.
- Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype.
- Refactored tensor processing logic to streamline device movement and dtype conversion.
- Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios.

* update data visualization

* update teleop example

* fix record bugs

* Add replay

* Not code

* feature(pipeline): port tokenizer pipeline for VLA (#1645)

* feat(tokenizer): Introduce TokenizerProcessor for text tokenization

- Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer.
- Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings.
- Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor.
- Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor.

* feat(language): Enhance language processing in TokenizerProcessor

- Added OBS_LANGUAGE constant to define the observation language key.
- Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature.
- Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization.
- Modified tests to validate the integration of language tokens and attention masks in the observation structure.

* feat(tokenizer): Add padding configuration to TokenizerProcessor

- Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction.
- Updated the `make_pi0_processor` function to include the new padding configuration.
- Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios.

* feat(processor): Add state management methods to Pi0NewLineProcessor

* feat(normalization): Track normalization and unnormalization info in complementary data

- Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes.
- Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions.
- Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys.

* feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs

- Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations.
- Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization.

* feat(processors): Integrate RenameProcessor into various processor configurations

- Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency.
- Updated the input steps to ensure compatibility with the new RenameProcessor integration.

* feat(smolvla): Refactor language processing and introduce new line processor (#1658)

- Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant.
- Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility.
- Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling.

* feture(policies): add device processor (#1659)

* feat(processors): Integrate DeviceProcessor into multiple processor configurations

- Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines.
- Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* feat(processor): Enhance DeviceProcessor with float dtype conversion

- Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types.
- Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype.
- Refactored tensor processing logic to streamline device movement and dtype conversion.
- Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios.

* feat(policies): Add new line processors and update module exports

* feat(processor): Enhance batch and device processors to handle index and task_index fields

- Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors.
- Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged.
- Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation.

* Add eval script

* fix `q_curr` in InverseKinematicsEEToJoints to the IK solution

* feat(processors): Introduce processors for various policy types

- Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`.
- Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps.
- Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity.
- Enhanced test coverage to validate the integration of new processors with existing policy configurations.

* refactor(learner): Remove normalization from cached image features retrieval

- Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls.
- This change enhances clarity and aligns with the recent updates to policy processors.

* refactor(policies): Remove unnormalization step from action predictions

- Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction.
- This change improves code clarity and aligns with recent updates to policy processors.

* feat(train): Integrate preprocessor into training pipeline

* refactor(train): Update preprocessor initialization to include dataset statistics

* refactor(policies): Enhance processor creation and add NaN detection hook

* feat(record): Integrate RobotProcessor into recording loop and update policy handling

- Added support for RobotProcessor in the record_loop function to enhance data processing capabilities.
- Updated the logic to reset both policy and processor when provided, ensuring proper state management.
- Modified action prediction to utilize the processor, improving the overall functionality of the recording process.
- Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities.

* feat(migration): Add script for migrating policy models with normalization layers

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models

- Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference.
- Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture.
- Refined the extraction and removal of normalization statistics and layers, streamlining the migration process.
- Improved error handling for missing mandatory configuration fields during model instantiation.

* feat(migrate): Add model card generation and saving to migration script

- Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags.
- Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility.
- Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub.

* feat(processor): Introduce ToBatchProcessor for handling observation batching

- Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing.
- Implemented functionality to add batch dimensions to state and image observations as needed.
- Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types.
- Ensured compatibility with existing transition keys and maintained the integrity of non-observation data.

* feat(processors): Add ToBatchProcessor to multiple policy processors

- Integrated ToBatchProcessor into various policy processors to handle observation batching.
- Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality.
- Ensured consistency across all processor implementations for improved data handling.

* refactor(factory): Remove unused imports and NaN detection hook from processor creation

* feat(batch_processor): Enhance ToBatchProcessor to handle action batching

- Updated ToBatchProcessor to add batch dimensions to actions in addition to observations.
- Implemented separate methods for processing observations and actions, improving code readability.
- Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration

- Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration.
- Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation.
- Refactored the loading of pretrained processors to utilize the new configuration options.

* refactor(factory): Clean up imports in factory.py

- Removed unused import of IdentityProcessor to streamline the code.

* feat(migrate): Extend load_model_from_hub to include train configuration

- Updated load_model_from_hub to return the train configuration alongside the model state_dict and config.
- Modified main function to handle the additional train configuration when loading models from both the hub and local paths.
- Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy.

* refactor(record): Rename processor parameters and update processing logic

- Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity.
- Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow.
- Ensured compatibility with existing functionality while improving code readability.

* feat(batch_processor): Add task field processing to ToBatchProcessor

- Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference.
- Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings.
- Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data.

* feat(normalization): Implement IDENTITY mode for normalization and unnormalization

- Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified.
- Updated processing logic to check normalization modes and handle missing statistics gracefully.
- Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios.
- Improved error handling for unsupported normalization modes.

* fix(rebase): remove residual normalization layer:

* refactor(diffusion): remove normalization layer from input processing

* refactor(normalization): Remove unused state dict transformation methods and streamline imports

- Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process.
- Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging.
- Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation.
- Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality.

* refactor(normalization): Clean up imports in normalize_processor.py

* feat(batch_processor): Add feature_contract method to ToBatchProcessor

- Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor.
- This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs.

* fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feature(pipeline): port tokenizer pipeline for VLA (#1645)

* feat(tokenizer): Introduce TokenizerProcessor for text tokenization

- Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer.
- Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings.
- Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor.
- Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor.

* feat(language): Enhance language processing in TokenizerProcessor

- Added OBS_LANGUAGE constant to define the observation language key.
- Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature.
- Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization.
- Modified tests to validate the integration of language tokens and attention masks in the observation structure.

* feat(tokenizer): Add padding configuration to TokenizerProcessor

- Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction.
- Updated the `make_pi0_processor` function to include the new padding configuration.
- Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios.

* feat(processor): Add state management methods to Pi0NewLineProcessor

* feat(normalization): Track normalization and unnormalization info in complementary data

- Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes.
- Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions.
- Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys.

* feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs

- Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations.
- Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization.

* feat(processors): Integrate RenameProcessor into various processor configurations

- Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency.
- Updated the input steps to ensure compatibility with the new RenameProcessor integration.

* feat(smolvla): Refactor language processing and introduce new line processor (#1658)

- Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant.
- Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility.
- Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling.

* feture(policies): add device processor (#1659)

* feat(processors): Integrate DeviceProcessor into multiple processor configurations

- Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor.
- Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines.
- Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(pipeline): Remove to() method for device management

- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.

* feat(processor): Enhance DeviceProcessor with float dtype conversion

- Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types.
- Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype.
- Refactored tensor processing logic to streamline device movement and dtype conversion.
- Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios.

* feat(policies): Add new line processors and update module exports

* feat(processor): Enhance batch and device processors to handle index and task_index fields

- Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors.
- Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged.
- Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation.

* refactor(processors): Standardize processor naming conventions

- Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format.
- Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme.
- Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability.

* refactor(factory): Update processor configuration and type hints

- Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety.
- Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility.
- Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations.
- Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling.

* Fix eval and android gripper

* add some tests

* refactor(factory, pi0fast): Update processor function names and parameters

- Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency.
- Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions.

* fix(train.py) push postprocessor with preprocessor
- Add preprocesser policy overrides for device and rename_map
- Add rename_map to DatasetRecordConfig (record.py)

* Cleanup pr

* fix more git diff pr issues

* add path as type in save_pretrained

* small nit

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* rename test file

* fix: make dataset_features/feature_contract is optional

* fix tests

* Encorperate pr feedback

* clean up record.py

* add ascii art, fix normal record

* remove merge issues

* fix merge

* remove features

* Add feedback PR

* fix last 4 tests

* remove features check

* rename to transform_features

* add transform_features

* fix lekiwi eval and update eval api example

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>

* refactor(TokenizerProcessor): improve dependency handling and observation management

- Updated TokenizerProcessor to conditionally import AutoTokenizer based on the availability of the transformers library, enhancing flexibility.
- Modified tokenizer attribute type to Any to accommodate scenarios where transformers may not be installed.
- Improved observation handling by using a more concise approach to manage the transition dictionary, ensuring compatibility with existing data structures.
- Added error handling for missing transformers library, providing clear guidance for users on installation requirements.

* feat(dependencies): Add scipy as a required dependency

- Included `scipy>=1.15.2` in the project dependencies to enhance functionality and support for scientific computing tasks.

* feat(policies): convert save_policy_to_safetensors with pipeline

* refactor(normalization): remove Normalize and Unnormalize classes

- Deleted the Normalize and Unnormalize classes from the normalization module to streamline the codebase.
- Updated tests to ensure compatibility with the removal of these classes, focusing on the new NormalizerProcessor and UnnormalizerProcessor implementations.
- Enhanced the handling of normalization statistics and improved overall code clarity.

* refactor(factory): streamline processor loading by removing unused comments

- Removed commented-out code related to loading pretrained processors in the make_processor function.
- This change enhances code clarity and maintains focus on the current implementation.

* feat(DeviceProcessor): Enhance tensor processing with device detection and float dtype conversion

- Improved the _process_tensor method to preserve GPU placement for tensors already on a GPU, facilitating multi-GPU training scenarios.
- Introduced a new _detect_device method in TokenizerProcessor to ensure tokenized tensors match the device of existing tensors in transitions.
- Added comprehensive unit tests to validate the functionality of device detection and float dtype conversion across various scenarios.

* feat(tests): Add comprehensive tests for various policy processors

- Introduced new test files for ACT, Classifier, Diffusion, PI0, SAC, SmolVLA, TDMPC, and VQBeT policy processors.
- Each test file includes unit tests to validate functionality, including handling of batch sizes, device management, and data type conversions.
- Enhanced test coverage to ensure robustness and reliability of processor implementations across different scenarios.

* refactor(train): Remove unnecessary tensor device handling in training loop

* Refactor`gym_manipulator.py` using the universal pipeline (#1650)

* Migrate gym_manipulator to use the pipeline
Added get_teleop_events function to capture relevant events from teleop devices unrelated to actions

* Added the capability to record a dataset

* Added the replay functionality with the pipeline

* Refactored `actor.py` to use the pipeline

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* RL works at this commit - fixed actor.py and bugs in gym_manipulator

* change folder structure to reduce the size of gym_manip

* Refactored hilserl config

* Remove dataset and mode from HilSerlEnvConfig to a GymManipulatorConfig to reduce verbose of configs during training

* format docs

* removed get_teleop_events from abc

* Refactor environment configuration and processing pipeline for GymHIL support. Removed device attribute from HILSerlRobotEnvConfig, added DummyTeleopDevice for simulation, and updated processor creation to accommodate GymHIL environments.

* Improved typing for HILRobotEnv config and GymManipulator config

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Migrated `gym_manipulator` to use a more modular structure similar to phone teleop

* Refactor gripper handling and transition processing in HIL and robot kinematic processors

- Updated gripper position handling to use a consistent key format across processors
- Improved the EEReferenceAndDelta class to handle reference joint positions.
- Added support for discrete gripper actions in the GripperVelocityToJoint processor.
- Refactored the gym manipulator to improve modularity and clarity in processing steps.

* Added delta_action_processor mapping wrapper

* Added missing file delta_action_processor and improved imports in `gym_manipulator`

* nit

* Added missing file joint_observation_processor

* Enhance processing architecture with new teleoperation processors

- Introduced `AddTeleopActionAsComplimentaryData` and `AddTeleopEventsAsInfo` for integrating teleoperator actions and events into transitions.
- Added `Torch2NumpyActionProcessor` and `Numpy2TorchActionProcessor` for seamless conversion between PyTorch tensors and NumPy arrays.
- Updated `__init__.py` to include new processors in module exports, improving modularity and clarity in the processing pipeline.
- GymHIL is now fully supported with HIL using the pipeline

* Refactor configuration structure for gym_hil integration

- Renamed sections for better readability, such as changing "Gym Wrappers Configuration" to "Processor Configuration."
- Enhanced documentation with clear examples for dataset collection and policy evaluation configurations.

* Enhance reset configuration and teleoperation event handling

- Added `terminate_on_success` parameter to `ResetConfig` and `InterventionActionProcessor` for controlling episode termination behavior upon success detection.
- Updated documentation to clarify the impact of `terminate_on_success` on data collection for reward classifier training.
- Refactored teleoperation event handling to use `TeleopEvents` constants for improved readability and maintainability across various modules.

* fix(keyboard teleop), delta action keys

* Added transform features and feature contract

* Added transform features for image crop

* Enum for TeleopEvents

* Update tranform_features delta action proc

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* Remove HILEnvConfig references

* chore(processor): Add default names for preprocessor and postprocessor in constants

- Introduced `PREPROCESSOR_DEFAULT_NAME` and `POSTPROCESSOR_DEFAULT_NAME` constants for consistent naming across various processor implementations.
- Updated processor creation in multiple policy files to utilize these constants, enhancing code readability and maintainability.
- Modified the training script to load and save the preprocessor and postprocessor using the new constants.

* feat(processor): multiple improvements to the pipeline porting (#1749)

* [Port codebase pipeline] General fixes for RL and scripts (#1748)

* Refactor dataset configuration in documentation and codebase

- Updated dataset configuration keys from `dataset_root` to `root` and `num_episodes` to `num_episodes_to_record` for consistency.
- Adjusted replay episode handling by renaming `episode` to `replay_episode`.
- Enhanced documentation
- added specific processor to transform from policy actions to delta actions

* Added Robot action to tensor processor
Added new processor script for dealing with gym specific action processing

* removed RobotAction2Tensor processor; imrpoved choosing observations in actor

* nit in delta action

* added missing reset functions to kinematics

* Adapt teleoperate and replay to pipeline similar to record

* refactor(processors): move to inheritance (#1750)

* fix(teleoperator): improvements phone implementation (#1752)

* fix(teleoperator): protect shared state in phone implementation

* refactor(teleop): separate classes in phone

* fix: solve breaking changes (#1753)

* refactor(policies): multiple improvements (#1754)

* refactor(processor): simpler logic in device processor (#1755)

* refactor(processor): euclidean distance in delta action processor (#1757)

* refactor(processor): improvements to joint observations processor migration (#1758)

* refactor(processor): improvements to tokenizer migration (#1759)

* refactor(processor): improvements to tokenizer migration

* fix(tests): tokenizer tests regression from #1750

* fix(processors): fix float comparison and config in hil processors (#1760)

* chore(teleop): remove unnecessary callbacks in KeyboardEndEffectorTeleop (#1761)

* refactor(processor): improvements normalize pipeline migration (#1756)

* refactor(processor): several improvements normalize processor step

* refactor(processor): more improvements normalize processor

* refactor(processor): more changes to normalizer

* refactor(processor): take a different approach to DRY

* refactor(processor): final design

* chore(record): revert comment and continue deleted (#1764)

* refactor(examples): pipeline phone examples (#1769)

* refactor(examples): phone teleop + teleop script

* refactor(examples): phone replay + replay

* chore(examples): rename phone example files & folders

* feat(processor): fix improvements to the pipeline porting (#1796)

* refactor(processor): enhance tensor device handling in normalization process (#1795)

* refactor(tests): remove unsupported device detection test for complementary data (#1797)

* chore(tests): update ToBatchProcessor test (#1798)

* refactor(tests): remove in-place mutation tests for actions and complementary data in batch processor

* test(tests): add tests for action and task processing in batch processor

* add names for android and ios phone (#1799)

* use _tensor_stats in normalize processor (#1800)

* fix(normalize_processor): correct device reference for tensor epsilon handling (#1801)

* add point 5 add missing feature contracts (#1806)

* Fix PR comments 1452 (#1807)

* use key to determine image

* Address rest of PR comments

* use PolicyFeatures in transform_features

---------

Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>

---------

Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>

* refactor(constants, processor): standardize action and observation keys across multiple files (#1808)

- Added new constants for truncated and done states in constants.py.
- Updated references to action and observation keys in pipeline_features.py, converters.py, hil_processor.py, tokenizer_processor.py, and robot_kinematic_processor.py to use the new constants for improved readability and maintainability.

* refactor(processor): improve processor pipeline typing with generic type (#1810)

* refactor(processor): introduce generic type for to_output

- Always return `TOutput`
- Remove `_prepare_transition`, so `__call__` now always returns `TOutput`
- Update tests accordingly
- This refactor paves the way for adding settings for `to_transition` and `to_output` in `make_processor` and the post-processor

* refactor(processor): consolidate ProcessorKwargs usage across policies

- Removed the ProcessorTypes module and integrated ProcessorKwargs directly into the processor pipeline.
- Updated multiple policy files to utilize the new ProcessorKwargs structure for preprocessor and postprocessor arguments.
- Simplified the handling of processor kwargs by initializing them to empty dictionaries when not provided.

* refactor(converters): implement unified tensor conversion function (#1830)

- Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors.
- Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability.
- Updated tests to cover new functionality and ensure correct tensor conversion behavior.

* Revert "refactor(converters): implement unified tensor conversion function (#…" (#1840)

This reverts commit a837685bf870919fc07ada287a71711cebabb1ea.

* refactor(converters): implement unified tensor conversion function (#1841)

- Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors.
- Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability.
- Updated tests to cover new functionality and ensure correct tensor conversion behavior.

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>

* refactor(converters): gather converters and refactor the logic (#1833)

* refactor(converters): move batch transition functions to converters module

- Moved `_default_batch_to_transition` and `_default_transition_to_batch` functions from `pipeline.py` to `converters.py` for better organization and separation of concerns.
- Updated references in `RobotProcessor` to use the new location of these functions.
- Added tests to ensure correct functionality of the transition functions, including handling of index and task_index fields.
- Removed redundant tests from `pipeline.py` to streamline the test suite.

* refactor(processor): reorganize EnvTransition and TransitionKey definitions

- Moved `EnvTransition` and `TransitionKey` classes from `pipeline.py` to a new `core.py` module for better structure and maintainability.
- Updated import statements across relevant modules to reflect the new location of these definitions, ensuring consistent access throughout the codebase.

* refactor(converters): rename and update dataset frame conversion functions

- Replaced `to_dataset_frame` with `transition_to_dataset_frame` for clarity and consistency in naming.
- Updated references in `record.py`, `pipeline.py`, and tests to use the new function name.
- Introduced `merge_transitions` to streamline the merging of transitions, enhancing readability and maintainability.
- Adjusted related tests to ensure correct functionality with the new naming conventions.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix(processor): solve conflict artefacts

* refactor(converters): remove unused identity function and update type hints for merge_transitions

* refactor(processor): remove unused identity import and clean up gym_manipulator.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>

* refactor(processors): add transform_features method to various processors (#1843)

* refactor(processors): update transition handling in RewardClassifierProcessor and InverseKinematicsEEToJoints (#1844)

* refactor(processors): unify import statements by consolidating pipeline imports into the main processor module (#1845)

* refactor(processors): add extended api for specialized pipelines (#1848)

* refactor(processors): enhance transform_features method across multiple processors (#1849)

* refactor(processors): enhance transform_features method across multiple processors

- Updated the transform_features method in various processors to utilize a copy of the features dictionary, ensuring immutability of the original features.
- Added handling for new feature keys and removed obsolete ones in the MapTensorToDeltaActionDict, JointVelocityProcessor, and others.
- Improved readability and maintainability by following consistent patterns in feature transformation.

* refactor(processors): standardize action and observation keys in delta_action_processor and joint_observations_processor

- Updated action and observation keys to use constants for improved readability and maintainability.
- Refactored the transform_features method in multiple processors to ensure consistent handling of feature keys.
- Enhanced error handling by raising exceptions for missing required components in action and observation processing.
- Removed obsolete code and improved overall structure for better clarity.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor(processors): remove unused import in joint_observations_processor

* refactor(processors): simplify transform_features method in delta_action_processor

* refactor(processors): streamline transform_features method in ImageCropResizeProcessor

* refactor(processors): improve error handling and streamline transform_features method in phone_processor

- Raised a ValueError for missing position and rotation in action to enhance error handling.

* refactor(processors): enhance error handling in JointVelocityProcessor

- Added a ValueError raise for missing current joint positions in the observation method to improve error handling and ensure the integrity of the transform_features method.

* refactor(processors): simplify transform_features method in robot kinematic processors

* refactor(processors): standardize action keys in phone_processor

* fix(processor): RKP feature obs -> act

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>

* chore(processor): rename RobotProcessor -> DataProcessorPipeline (#1850)

* chore(processor): rename specialized processor -> XYZProcessorStep (#1852)

* chore(processor): rename converters function names (#1853)

* chore(processor): rename to_transition_teleop_action -> action_to_transition

* chore(processor): rename to_transition_robot_observation -> observation_to_transition

* chore(processor): rename to_output_robot_action -> transition_to_robot_action

* chore(processor): add Step suffix to all processors (#1854)

* refactor(processor): rename MapDeltaActionToRobotAction and MapTensorToDeltaActionDict for consistency

* refactor(processor): rename DeviceProcessor to DeviceProcessorStep for consistency across modules

* refactor(processor): rename Torch2NumpyActionProcessor to Torch2NumpyActionProcessorStep for consistency

* refactor(processor): rename Numpy2TorchActionProcessor to Numpy2TorchActionProcessorStep for consistency

* refactor(processor): rename AddTeleopActionAsComplimentaryData to AddTeleopActionAsComplimentaryDataStep for consistency

* refactor(processor): rename ImageCropResizeProcessor and AddTeleopEventsAsInfo for consistency

* refactor(processor): rename TimeLimitProcessor to TimeLimitProcessorStep for consistency

* refactor(processor): rename GripperPenaltyProcessor to GripperPenaltyProcessorStep for consistency

* refactor(processor): rename InterventionActionProcessor to InterventionActionProcessorStep for consistency

* refactor(processor): rename RewardClassifierProcessor to RewardClassifierProcessorStep for consistency

* refactor(processor): rename JointVelocityProcessor to JointVelocityProcessorStep for consistency

* refactor(processor): rename MotorCurrentProcessor to MotorCurrentProcessorStep for consistency

* refactor(processor): rename NormalizerProcessor and UnnormalizerProcessor to NormalizerProcessorStep and UnnormalizerProcessorStep for consistency

* refactor(processor): rename VanillaObservationProcessor to VanillaObservationProcessorStep for consistency

* refactor(processor): rename RenameProcessor to RenameProcessorStep for consistency

* refactor(processor): rename TokenizerProcessor to TokenizerProcessorStep for consistency

* refactor(processor): rename ToBatchProcessor to AddBatchDimensionProcessorStep for consistency

* refactor(processor): update config file name in test for RenameProcessorStep consistency

* refactor(processor): rename internal tokenizer variable for clarity (#1855)

- Changed the internal tokenizer variable name from `_tokenizer` to `input_tokenizer` for improved readability and consistency.
- Updated references throughout the class to reflect the new variable name.

* chore(processor): rename merge_features -> combine_feature_dicts (#1856)

* refactor(processor): rename internal device variable for clarity (#1857)

- Changed the internal device variable from `_device` to `tensor_device` for improved readability and consistency.
- Updated references throughout the class to reflect the new variable name.

* chore(processor): rename teleop_phone variable names (#1858)

* chore(processor): add type alias RobotProcessorPipeline and PolicyProcessorPipeline (#1859)

* feat(processor): introduce PolicyProcessorPipeline and RobotProcessorPipeline as type aliases for DataProcessorPipeline

- Added PolicyProcessorPipeline and RobotProcessorPipeline type aliases to enhance clarity and maintainability in the processor module.
- Updated the __all__ list to include the new pipelines for better module export consistency.

* refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline across multiple modules

- Updated all instances of DataProcessorPipeline to PolicyProcessorPipeline in various processor files for consistency and clarity.
- Adjusted function signatures to reflect the new pipeline type, enhancing maintainability and readability.

* refactor(processor): update hotswap_stats function to use PolicyProcessorPipeline

- Changed the parameter name from robot_processor to policy_processor for clarity.
- Ensured consistency with recent updates to the processor module by reflecting the new pipeline type in the function signature.

* refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline in migrate_policy_normalization.py

- Updated the preprocessor and postprocessor to use PolicyProcessorPipeline for consistency with recent changes in the processor module.
- Enhanced clarity and maintainability by aligning with the new pipeline structure.

* refactor(processor): update hotswap_stats to use PolicyProcessorPipeline

- Changed the parameter type in hotswap_stats from DataProcessorPipeline to PolicyProcessorPipeline for consistency with recent updates.
- Enhanced clarity by updating the function documentation to reflect the new pipeline type.

* refactor(processor): replace DataProcessorPipeline with RobotProcessorPipeline across multiple files

- Updated instances of DataProcessorPipeline to RobotProcessorPipeline in evaluate.py, record.py, replay.py, teleoperate.py, and other relevant files for consistency and clarity.
- Adjusted function signatures and variable types to reflect the new pipeline structure, enhancing maintainability and readability.

* refactor(processor): enforce config_filename requirement for HF Hub loading (#1860)

- Updated the DataProcessorPipeline to require a specific config_filename when loading from Hugging Face Hub, enhancing clarity and preventing errors.
- Simplified local path checks and improved error handling for invalid paths.
- Adjusted tests to reflect the new requirement and ensure proper error handling for various loading scenarios.

* feat(record): add transition features to dataset and handle scalar vs array formatting in converters (#1861)

- Introduced new transition features (`next.reward`, `next.done`, `next.truncated`) in the dataset during recording.
- Updated the `transition_to_dataset_frame` function to handle scalar values correctly, ensuring compatibility with expected array formats for reward, done, and truncated features.

* refactor(pipeline): enforce ProcessorStep inheritance for pipeline steps (#1862)

- Updated the DataProcessorPipeline to require that all steps inherit from ProcessorStep, enhancing type safety and clarity.
- Adjusted tests to utilize a MockTokenizerProcessorStep that adheres to the ProcessorStep interface, ensuring consistent behavior across tests.
- Refactored various mock step classes in tests to inherit from ProcessorStep for improved consistency and maintainability.

* refactor(dependencies): remove scipy dependency and introduce custom rotation utilities (#1863)

- Removed the scipy dependency from the project to streamline requirements.
- Added a new `rotation.py` module containing a custom `Rotation` class that replicates essential functionalities of `scipy.spatial.transform.Rotation`, allowing for rotation vector, matrix, and quaternion conversions without external dependencies.
- Updated the `robot_kinematic_processor.py` to utilize the new custom rotation utilities.

* feat(teleoperation): introduce HasTeleopEvents protocol and enhance teleop event handling (#1866)

- Added the HasTeleopEvents protocol to define a standard for teleoperators that provide control events.
- Implemented a runtime check to ensure teleoperators implement the get_teleop_events() method.
- Updated AddTeleopEventsAsInfoStep to utilize the new protocol, enhancing compatibility with custom teleoperators.
- Improved documentation for clarity on teleoperation event extraction and compatibility with built-in teleoperators.

* fix(deps): use in-house rotation utils over scipy throughout the codebase

* refactor(constants): rename preprocessor and postprocessor constants for clarity (#1868)

- Updated constant names from PREPROCESSOR_DEFAULT_NAME and POSTPROCESSOR_DEFAULT_NAME to POLICY_PREPROCESSOR_DEFAULT_NAME and POLICY_POSTPROCESSOR_DEFAULT_NAME for better context.
- Adjusted references across multiple files to use the new constant names, ensuring consistency in the codebase.

* refactor(tests): update processor test assertions to reflect new preprocessor and postprocessor names (#1869)

- Changed assertions in multiple processor test files to verify the updated names from "robot_preprocessor" and "robot_postprocessor" to "policy_preprocessor" and "policy_postprocessor" for consistency with recent refactoring.

* refactor(utils): simplify log_rerun_data function (#1864)

* refactor(logging): enhance log_rerun_data to handle observation and action separately

- Updated the `log_rerun_data` function to accept and log observation and action data more clearly, improving readability and maintainability.
- Refactored the `record_loop` and `teleop_loop` functions to extract and pass observation and action data to `log_rerun_data`, ensuring consistent logging format.

* refactor(tests): update test_log_rerun_data to align with log_rerun_data changes

- Modified test cases in `test_visualization_utils.py` to extract and pass observation and action data separately to `log_rerun_data`, improving clarity and consistency with recent function updates.
- Ensured that the tests reflect the new structure of `log_rerun_data` for better maintainability.

* refactor(processors): simplify calls to log_rerun + replace lambda functions with identity_transition

---------

Co-authored-by: Steven Palma <steven.palma@huggingface.co>

* fix(processor): recover type inference for use of processors (#1873)

* refactor(processors): Improve Normalization Processor Performance and Device/Dtype Adaptability (#1880)

* refactor(processors): reorder processor steps for consistency across implementations

- Updated the order of processor steps in multiple files to ensure consistency, placing AddBatchDimensionProcessorStep and DeviceProcessorStep before NormalizerProcessorStep.
- Adjusted related test assertions to reflect the new order of steps in the preprocessor, enhancing clarity and maintainability.

* refactor(normalization): remove dtype specification in tensor conversion for adaptation logic

- Updated tensor conversion in the _NormalizationMixin class to remove explicit dtype specification, allowing for automatic adaptation of tensor types.
- Adjusted related tests to ensure proper functionality with the new tensor conversion logic, verifying that normalizers adapt correctly to input types.

* chore(docs): update doctrines pipeline files (#1872)

* docs(processor): update docstrings batch_processor

* docs(processor): update docstrings device_processor

* docs(processor): update docstrings tokenizer_processor

* update docstrings processor_act

* update docstrings for pipeline_features

* update docstrings for utils

* update docstring for processor_diffusion

* update docstrings factory

* add docstrings to pi0 processor

* add docstring to pi0fast processor

* add docstring classifier processor

* add docstring to sac processor

* add docstring smolvla processor

* add docstring to tdmpc processor

* add docstring to vqbet processor

* add docstrings to converters

* add docstrings for delta_action_processor

* add docstring to gym action processor

* update hil processor

* add docstring to joint obs processor

* add docstring to migrate_normalize_processor

* update docstrings normalize processor

* update docstring normalize processor

* update docstrings observation processor

* update docstrings rename_processor

* add docstrings robot_kinematic_processor

* cleanup rl comments

* add docstring to train.py

* add docstring to teleoperate.py

* add docstrings to phone_processor.py

* add docstrings to teleop_phone.py

* add docstrings to control_utils.py

* add docstrings to visualization_utils.py

---------

Co-authored-by: Pepijn <pepijn@huggingface.co>

* refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions (#1900)

* refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions

- Updated the `rollout` and `eval_policy` functions to accept preprocessor and postprocessor parameters, enhancing the flexibility of the evaluation pipeline.
- Adjusted the implementation to apply preprocessing and postprocessing steps during policy evaluation, improving the overall data handling and processing flow.

* refactor(eval): remove redundant observation device conversion in rollout function

- Eliminated unnecessary device conversion for the observation dictionary within the `rollout` function, streamlining the code and enhancing readability.
- This change simplifies the observation handling process, aligning with the preference for clearer solutions.

* debug

* refactor(utils): enhance task handling in add_envs_task function

- Improved the `add_envs_task` function to validate the output of `task_description` and `task` calls, ensuring they return lists of strings.
- Removed the use of `else` statement for environments without language instructions, simplifying the logic and enhancing readability.
- Streamlined the observation dictionary handling by ensuring consistent data types for task attributes.

* refactor(converters): rename _from_tensor to from_tensor_to_numpy for clarity (#1902)

- Updated the function name from _from_tensor to from_tensor_to_numpy to better reflect its purpose of converting PyTorch tensors to numpy arrays or scalars.
- Adjusted all references to the renamed function throughout the codebase to maintain consistency.
- Enhanced the _NormalizationMixin class to reconstruct the stats dictionary from tensor stats using the new function, ensuring compatibility after loading state dicts.
- Added tests to verify the correct reconstruction of stats and functionality of methods dependent on self.stats after loading.

* refactor(pipeline): feature contract now categorizes between OBS or Action (#1867)

* refactor(processor): signature of transform_features

* refactor(processor): remove prefixes + processor respect new transform_features signature + update test accordingly

* refactor(processor): rename now is only for visual

* refactor(processor): update normalize processor

* refactor(processor): update vanilla processor features

* refactor(processor): feature contract now uses its own enum

* chore(processor): rename renameprocessor

* chore(processor): minor changes

* refactor(processor): add create & change aggregate

* refactor(processor): update aggregate

* refactor(processor): simplify to functions, fix features contracts and rename function

* test(processor): remove to converter tests as now they are very simple

* chore(docs): recover docs joint observations processor

* fix(processor): update RKP

* fix(tests): recv diff test_pipeline

* chore(tests): add docs to test

* chore(processor): leave obs language constant untouched

* fix(processor): correct new shape of feature in crop image processor

* refactor(eval): specify type parameters for preprocessor and postprocessor in eval_policy function (#1904)

* chore(processor): remove action prefixes (#1905)

* test(processor): all processors use now the same create_transition (#1906)

* test(processor): all processors use now the same create_transition

* test(processor): use identity instead of lambda for transition in pipelines

* fix(processor): specialized processors respect contract by raising if none (#1909)

* fix(processor): specialized processor now raise

* test(processor): fix tests for now raise specialized processors

* test(processor): use identity in newly introduced pipeline

* refactor(processor): clarify action types, distinguish PolicyAction, RobotAction, and EnvAction (#1908)

* refactor(processor): split action from policy, robots and environment

- Updated function names to robot_action_to_transition and robot_transition_to_action across multiple files to better reflect their purpose in processing robot actions.
- Adjusted references in the RobotProcessorPipeline and related components to ensure compatibility with the new naming convention.
- Enhanced type annotations for action parameters to improve code readability and maintainability.

* refactor(converters): rename robot_transition_to_action to transition_to_robot_action

- Updated function names across multiple files to improve clarity and consistency in processing robot actions.
- Adjusted references in RobotProcessorPipeline and related components to align with the new naming convention.
- Simplified action handling in the AddBatchDimensionProcessorStep by removing unnecessary checks for action presence.

* refactor(converters): update references to transition_to_robot_action

- Renamed all instances of robot_transition_to_action to transition_to_robot_action across multiple files for consistency and clarity in the processing of robot actions.
- Adjusted the RobotProcessorPipeline configurations to reflect the new naming convention, enhancing code readability.

* refactor(processor): update Torch2NumpyActionProcessorStep to extend ActionProcessorStep

- Changed the base class of Torch2NumpyActionProcessorStep from PolicyActionProcessorStep to ActionProcessorStep, aligning it with the current architecture of action processing.
- This modification enhances the clarity of the class's role in the processing pipeline.

* fix(processor): main action processor can take also EnvAction

---------

Co-authored-by: Steven Palma <steven.palma@huggingface.co>

* refactor(processor): phone processor is now an RobotActionProcessorStep

* fix(processor): use subprocessors in AddBatchDimensionProcessorStep only if we have the ingredients

* fix(robots): remove action prefix hard-coded in teleop keyboard and gamepad

* feat(processor): enhance type safety with generic DataProcessorPipeline for policy and robot pipelines (#1915)

* refactor(processor): enhance type annotations for processors in record, replay, teleoperate, and control utils

- Updated type annotations for preprocessor and postprocessor parameters in record_loop and predict_action functions to specify the expected dictionary types.
- Adjusted robot_action_processor type in ReplayConfig and TeleoperateConfig to improve clarity and maintainability.
- Ensured consistency in type definitions across multiple files, enhancing overall code readability.

* refactor(processor): enhance type annotations for RobotProcessorPipeline in various files

- Updated type annotations for RobotProcessorPipeline instances in evaluate.py, record.py, replay.py, teleoperate.py, and other related files to specify input and output types more clearly.
- Introduced new type conversions for PolicyAction and EnvTransition to improve type safety and maintainability across the processing pipelines.
- Ensured consistency in type definitions, enhancing overall code readability and reducing potential runtime errors.

* refactor(processor): update transition handling in processors to use transition_to_batch

- Replaced direct transition handling with transition_to_batch in various processor tests and implementations to ensure consistent batching of input data.
- Updated assertions in tests to reflect changes in data structure, enhancing clarity and maintainability.
- Improved overall code readability by standardizing the way transitions are processed across different processor types.

* refactor(tests): standardize transition key usage in processor tests

- Updated assertions in processor test files to utilize the TransitionKey for action references, enhancing consistency across tests.
- Replaced direct string references with TransitionKey constants for improved readability and maintainability.
- Ensured that all relevant tests reflect these changes, contributing to a more uniform approach in handling transitions.

* refactor(processor): unify action imports and enhance type clarity across multiple files

- Updated imports in various files to include RobotAction and PolicyAction directly from the processor module, improving clarity and consistency.
- Removed redundant imports from core, streamlining the codebase and enhancing maintainability.
- Adjusted type annotations and references in the RobotProcessorPipeline and related components to align with the new import structure, ensuring better type safety and readability.

* refactor(processor): migrate policy normalization to use factory functions

- Updated the migration script to utilize `make_pre_post_processors` and `make_policy_config` from `lerobot.policies.factory`, enhancing consistency with the current codebase.
- Improved normalization statistics extraction and processor pipeline creation, ensuring compatibility with the new `PolicyProcessorPipeline` architecture.
- Cleaned up configuration handling by removing unnecessary fields and adding normalization mapping directly to the config.
- Enhanced type safety and readability by refining feature type and normalization mode handling.

* debug(scripts): simplify record with processors (#1918)

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>

* refactor(processor): update migration script for policy normalization and hub integration

- Modified the migration script to include a branch argument for pushing to the hub, enhancing flexibility in version control.
- Improved error handling by ensuring the policy type is extracted from the configuration, promoting robustness.
- Streamlined the process of saving and pushing model components to the hub, allowing for a single commit with optional PR creation.
- Updated the commit message and description for better clarity on the migration changes and benefits, ensuring users are informed of the new architecture and usage.

* fixes for processors used in phone teleop

* fixes for rotation matrix

* add empty obs and act in create_initial_features

* use observation instead of obs

* docs(processor): update docstrings pipeline (#1920)

* chore(docs): Processor doc (#1685)

* chore(docs): initialize doc

* Added script for the second part of the processor doc

* precommit style nit

* improved part 2 of processor guide

* Add comprehensive documentation for processors in robotics

- Introduced a detailed guide on processors, covering their role in transforming raw robot data into model-ready inputs and vice versa.
- Explained core concepts such as EnvTransition, ProcessorStep, and RobotProcessor, along with their functionalities.
- Included examples of common processor steps like normalization, device management, batch processing, and text tokenization.
- Provided insights on building complete pipelines, integrating processors into training loops, and saving/loading configurations.
- Emphasized best practices and advanced features for effective usage of processors in robotics applications.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* feat(docs): Enhance introduction to processors with additional converter functions

- Updated the introduction to processors documentation to include default batch-to-transition and transition-to-batch converters.
- Added detailed descriptions and examples for new specialized converter functions: `to_transition_teleop_action`, `to_transition_robot_observation`, `to_output_robot_action`, and `to_dataset_frame`.
- Improved clarity on how these converters facilitate integration with existing robotics applications.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Improved doc implement_your_own_pipeline
- Use normalization processor as default example
- Add section on transform features
- Add section on overrides.

* Add phone docs and use pipeline for robots/teleop docs

* Fix typo in documentation for adapters in robots/teleop section

* Enhance documentation for processors with detailed explanations and examples

- Updated the introduction to processors, clarifying the role of `EnvTransition` and `ProcessorStep`.
- Introduced `DataProcessorPipeline` as a generic orchestrator for chaining processor steps.
- Added comprehensive descriptions of new converter functions and their applications.
- Improved clarity on type safety and the differences between `RobotProcessorPipeline` and `PolicyProcessorPipeline`.
- Included examples for various processing scenarios, emphasizing best practices for data handling in robotics.

* Enhance documentation for processor migration and debugging

- Added detailed sections on the migration of models to the new `PolicyProcessorPipeline` system, including breaking changes and migration scripts.
- Introduced a comprehensive guide for debugging processor pipelines, covering common issues, step-by-step inspection, and runtime monitoring techniques.
- Updated examples to reflect new usage patterns and best practices for processor implementation and error handling.
- Clarified the role of various processor steps and their configurations in the context of robotics applications.

---------

Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Pepijn <pepijn@huggingface.co>

* docs: Add new section for debugging processor pipelines

- Introduced a new documentation entry for debugging processor pipelines, enhancing the existing guide on processors.
- This addition aims to provide users with insights and best practices for troubleshooting and optimizing their processor workflows.

* fix(processor): phone examples (#1921)

* fix(processor): phone examples

* chore(processor): simplify gripper in phone example kinematic chain

---------

Co-authored-by: Steven Palma <steven.palma@huggingface.co>

* refactor(processors): several additions (#1926)

* chore(processor): remove merge_transitions functions (#1925)

* refactor(processors): move processors out of configs (#1927)

* chore(processor): streamline combine_features_dict (#1928)

* chore(policies): use new constants (#1929)

* fix(deps): right version transformers (#1930)

* fix(tests): add none + disable async tests for now (#1931)

* refactor(processor): transform_features loop + EAFP (#1932)

* fix(processors): make sure nested dict are also shallow copied (#1939)

* refactor(processor): replace ModelHubMixin with HubMixin and enhance save_pretrained method (#1937)

- Updated DataProcessorPipeline to use HubMixin instead of ModelHubMixin for improved functionality.
- Refactored save_pretrained method to handle saving

* refactor(docs): streamline monitoring hooks and enhance performance reporting

- Removed the log_shapes and measure_performance hooks, simplifying the monitoring process to focus on NaN checks.
- Updated performance reporting to include maximum processing times alongside average times for better insights.
- Clarified documentation regarding the processing pipeline and feature transformations.

* fix teleop, record and eval (#1940)

* fix cmd record, eval

* chore(processor): update input output of main 3 processors for better semantics (#1942)

* chore(processor): update input output of main 3 processors for better semantics

* refactor(processor): replace Any with RobotObservation for improved type safety in processors

* fix(processors): no PolicyObservation

* chore(processor): update with RobotObservation

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* test(processor): fix batch expectation

* feat(example): Add SO100 EE pipeline control (teleop+record) (#1943)

* feat(examples): add ee so100 processors teleop & record

* refactor(processor): improve FK processor for better use compatability

* docs(processor): enhance tutorial on implementing custom processors

- Updated the tutorial to use `NormalizerProcessorStep` as the primary example, clarifying its role in normalizing observations and actions.
- Improved explanations of the need for custom processors, emphasizing data compatibility and processing requirements.
- Added code snippets demonstrating the normalization process and the configuration of processor pipelines.
- Enhanced the introduction to processors, detailing their function as translators between raw robot data and model inputs.
- Included examples of real-world processor configurations for both training and inference scenarios.

* docs(debug): enhance debugging guide for processor pipelines

- Streamlined the introduction to clarify the challenges of debugging complex processor pipelines.
- Expanded the section on hooks, detailing their purpose and implementation for runtime monitoring.
- Introduced step-by-step debugging techniques, emphasizing the use of the `step_through()` method for inspecting intermediate states.
- Added examples of feature validation to ensure data structure contracts are met.
- Consolidated best practices for debugging, highlighting the synergy between hooks, step-through debugging, and feature validation.

* chore(processors): tokenizers raises and remove tensor conversion (#1949)

* chore(processor): remove unused transition_features dict

* feat(ee): add so100_to_so100_EE replay and evaluate examples

* chore(examples): homogenize style across example files (#1955)

* chore(examples): homogenize style across example files

* chore(examples): homogenize style across example files eval + replay

* chore(examples): homogenize headers

* test(async): fix feature manipulation (#1957)

* test(async): fix feature manipulation

* chore(processor): remove unused functions

* fix(processor): Preserve stats overrides in normalizer load_state_dict and fix training resumption (#1958)

* feat(processor): enhance normalization handling and state management

- Added support for additional normalization modes including IDENTITY.
- Introduced a new function `clean_state_dict` to remove specific substrings from state dict keys.
- Implemented preservation of explicitly provided normalization statistics during state loading.
- Updated training script to conditionally provide dataset statistics based on resume state.
- Expanded tests to verify the correct behavior of stats override preservation and loading.

* fix(train): remove redundant comment regarding state loading

- Removed a comment that noted the preprocessor and postprocessor state is already loaded when resuming training, as it was deemed unnecessary for clarity.

* test(processor): update tests to handle missing or invalid task keys

- Modified tests to assert that the processor raises appropriate exceptions when the task key is missing or has an invalid value in the complementary data.
- Ensured that the tests cover cases for None, integer, and mixed list task values, improving robustness against invalid inputs.

* fix(processor): enforce signatures

* chore(processor): update comments in record.py

* test(processor): fix isinstance and cuda test

* modify phone docs

* fix(processor): reorder output steps to ensure correct processing sequence (#1961)

- Moved DeviceProcessorStep to the end of the output steps in multiple processor files to maintain the intended processing order.
- Updated corresponding tests to reflect the change in step order.

* fix(processors): assumptions for robot_action_processor & teleop_action_processor (#1964)

* fix(processors): new assumptions pipeline

* fix(processors): ee jj phone teleop replay record working

* chore(processors): update comments and default vars

* chore(processor): remove unnecessary copy

* chore(processor): added todo assumption gripper

* fix(processors): eval using detected device

* finish phone docs

* fix correct image link

* feat(processor): implement migration detection and error handling for  processor configurations (#1968)

* feat(processor): implement migration detection and error handling for processor configurations

- Added ProcessorMigrationError to handle migration requirements for old model formats.
- Enhanced DataProcessorPipeline.from_pretrained to include robust migration detection logic.
- Implemented methods for resolving configuration sources, validating loaded configs, and checking for valid processor configurations.
- Introduced comprehensive tests for migration detection and configuration validation to ensure correct behavior.

* refactor(processor): simplify loading logic and enhance migration detection

- Refactored DataProcessorPipeline to implement a simplified three-way loading strategy for configuration files.
- Introduced explicit config_filename parameter to avoid ambiguity during loading.
- Updated ProcessorMigrationError to provide clearer error messages for migration requirements.
- Enhanced tests to cover new loading logic and ensure proper migration detection.
- Removed deprecated methods related to config source resolution.

* fix(processor) RL (#1953)

* fix(gym_manipulator) general fixes to make it compitable

* fix for dataset v3.0

* fix for gym_manipulator

* add map policy action to robot action wrappers in a seperate scripts

* added unittest for policy to robot bridge

* fixes for gripper penalty

* fix style

* fix gamepad controller

* fixes for sim teleop

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* modify numpy2torch to a regular processor as a quick fix

* missing imports?!

* - Removed the use of `AddRobotObservationAsComplimentaryData` from `gym_manipulator` and thus the codebase
- Added get_raw_joint_positions functions to RobotEnv
- Pass raw_joint_positions as input to the action_pipeline in `gym_manipulator`
- Add `InverseKinematicsRLStep` to be tailored towards the need of RL which requires the use of the IK solution as the main reference point of the control loop
- Added the option `use_ik_solution` in `EEReferenceDelta` step to rely on the ik solution rather than the joint values

* -Updated links to all the config files to place them in the new repo with configs compatible with the pipeline

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>

* fix(tests): update test cases for loading pipelines with specific config filenames

- Modified test cases to include explicit configuration filenames when loading pipelines in `test_policy_robot_bridge.py`.
- Ensured that the tests reflect the correct loading behavior for both robot-to-policy and policy-to-robot transitions.

* fix(examples): train mps processor (#1970)

* fix(examples): train mps processor

* fix(processor): add MPS compatibility for float64 tensors

- Implemented a workaround to convert float64 tensors to float32 when using the MPS device, as MPS does not support float64.
- Added unit tests to verify the automatic conversion of float64 tensors to float32 and ensure compatibility with various tensor types on the MPS device.

---------

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>

---------

Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
Co-authored-by: Pepijn <pepijn@huggingface.co>
This commit is contained in:
Adil Zouitine
2025-09-18 15:25:26 +02:00
committed by GitHub
parent 55e752f0c2
commit 78b866116f
141 changed files with 23478 additions and 5556 deletions

View File

@@ -26,7 +26,7 @@ from huggingface_hub import hf_hub_download
from huggingface_hub.constants import CONFIG_NAME
from huggingface_hub.errors import HfHubHTTPError
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.configs.types import FeatureType, PolicyFeature
from lerobot.constants import ACTION, OBS_STATE
from lerobot.optim.optimizers import OptimizerConfig
from lerobot.optim.schedulers import LRSchedulerConfig
@@ -53,7 +53,6 @@ class PreTrainedConfig(draccus.ChoiceRegistry, HubMixin, abc.ABC):
"""
n_obs_steps: int = 1
normalization_mapping: dict[str, NormalizationMode] = field(default_factory=dict)
input_features: dict[str, PolicyFeature] = field(default_factory=dict)
output_features: dict[str, PolicyFeature] = field(default_factory=dict)

View File

@@ -24,6 +24,12 @@ class FeatureType(str, Enum):
ENV = "ENV"
ACTION = "ACTION"
REWARD = "REWARD"
LANGUAGE = "LANGUAGE"
class PipelineFeatureType(str, Enum):
ACTION = "ACTION"
OBSERVATION = "OBSERVATION"
class NormalizationMode(str, Enum):

View File

@@ -21,8 +21,14 @@ OBS_ENV_STATE = "observation.environment_state"
OBS_STATE = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
OBS_LANGUAGE = "observation.language"
ACTION = "action"
REWARD = "next.reward"
TRUNCATED = "next.truncated"
DONE = "next.done"
OBS_LANGUAGE_TOKENS = OBS_LANGUAGE + ".tokens"
OBS_LANGUAGE_ATTENTION_MASK = OBS_LANGUAGE + ".attention_mask"
ROBOTS = "robots"
ROBOT_TYPE = "robot_type"
@@ -39,6 +45,9 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
POLICY_PREPROCESSOR_DEFAULT_NAME = "policy_preprocessor"
POLICY_POSTPROCESSOR_DEFAULT_NAME = "policy_postprocessor"
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"

View File

@@ -0,0 +1,141 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from collections.abc import Sequence
from typing import Any
from lerobot.configs.types import PipelineFeatureType
from lerobot.constants import ACTION, OBS_IMAGES, OBS_STATE
from lerobot.datasets.utils import hw_to_dataset_features
from lerobot.processor import DataProcessorPipeline
def create_initial_features(
action: dict[str, Any] | None = None, observation: dict[str, Any] | None = None
) -> dict[PipelineFeatureType, dict[str, Any]]:
"""
Creates the initial features dict for the dataset from action and observation specs.
Args:
action: A dictionary of action feature names to their types/shapes.
observation: A dictionary of observation feature names to their types/shapes.
Returns:
The initial features dictionary structured by PipelineFeatureType.
"""
features = {PipelineFeatureType.ACTION: {}, PipelineFeatureType.OBSERVATION: {}}
if action:
features[PipelineFeatureType.ACTION] = action
if observation:
features[PipelineFeatureType.OBSERVATION] = observation
return features
# Helper to filter state/action keys based on regex patterns.
def should_keep(key: str, patterns: tuple[str]) -> bool:
if patterns is None:
return True
return any(re.search(pat, key) for pat in patterns)
def strip_prefix(key: str, prefixes_to_strip: tuple[str]) -> str:
for prefix in prefixes_to_strip:
if key.startswith(prefix):
return key[len(prefix) :]
return key
# Define prefixes to strip from feature keys for clean names.
# Handles both fully qualified (e.g., "action.state") and short (e.g., "state") forms.
PREFIXES_TO_STRIP = tuple(
f"{token}." for const in (ACTION, OBS_STATE, OBS_IMAGES) for token in (const, const.split(".")[-1])
)
def aggregate_pipeline_dataset_features(
pipeline: DataProcessorPipeline,
initial_features: dict[PipelineFeatureType, dict[str, Any]],
*,
use_videos: bool = True,
patterns: Sequence[str] | None = None,
) -> dict[str, dict]:
"""
Aggregates and filters pipeline features to create a dataset-ready features dictionary.
This function transforms initial features using the pipeline, categorizes them as action or observations
(image or state), filters them based on `use_videos` and `patterns`, and finally
formats them for use with a Hugging Face LeRobot Dataset.
Args:
pipeline: The DataProcessorPipeline to apply.
initial_features: A dictionary of raw feature specs for actions and observations.
use_videos: If False, image features are excluded.
patterns: A sequence of regex patterns to filter action and state features.
Image features are not affected by this filter.
Returns:
A dictionary of features formatted for a Hugging Face LeRobot Dataset.
"""
all_features = pipeline.transform_features(initial_features)
# Intermediate storage for categorized and filtered features.
processed_features: dict[str, dict[str, Any]] = {
"action": {},
"observation": {},
}
images_token = OBS_IMAGES.split(".")[-1]
# Iterate through all features transformed by the pipeline.
for ptype, feats in all_features.items():
if ptype not in [PipelineFeatureType.ACTION, PipelineFeatureType.OBSERVATION]:
continue
for key, value in feats.items():
# 1. Categorize the feature.
is_action = ptype == PipelineFeatureType.ACTION
# Observations are classified as images if their key matches image-related tokens or if the shape of the feature is 3.
# All other observations are treated as state.
is_image = not is_action and (
(isinstance(value, tuple) and len(value) == 3)
or (
key.startswith(f"{OBS_IMAGES}.")
or key.startswith(f"{images_token}.")
or f".{images_token}." in key
)
)
# 2. Apply filtering rules.
if is_image and not use_videos:
continue
if not is_image and not should_keep(key, patterns):
continue
# 3. Add the feature to the appropriate group with a clean name.
name = strip_prefix(key, PREFIXES_TO_STRIP)
if is_action:
processed_features["action"][name] = value
else:
processed_features["observation"][name] = value
# Convert the processed features into the final dataset format.
dataset_features = {}
if processed_features["action"]:
dataset_features.update(hw_to_dataset_features(processed_features["action"], ACTION, use_videos))
if processed_features["observation"]:
dataset_features.update(
hw_to_dataset_features(processed_features["observation"], "observation", use_videos)
)
return dataset_features

View File

@@ -150,14 +150,20 @@ def get_video_size_in_mb(mp4_path: Path) -> float:
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
"""Flatten a nested dictionary by joining keys with a separator.
For example:
```
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}`
>>> print(flatten_dict(dct))
{"a/b": 1, "a/c/d": 2, "e": 3}
```
Example:
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}
>>> print(flatten_dict(dct))
{'a/b': 1, 'a/c/d': 2, 'e': 3}
Args:
d (dict): The dictionary to flatten.
parent_key (str): The base key to prepend to the keys in this level.
sep (str): The separator to use between keys.
Returns:
dict: A flattened dictionary.
"""
items = []
for k, v in d.items():
@@ -170,6 +176,20 @@ def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
def unflatten_dict(d: dict, sep: str = "/") -> dict:
"""Unflatten a dictionary with delimited keys into a nested dictionary.
Example:
>>> flat_dct = {"a/b": 1, "a/c/d": 2, "e": 3}
>>> print(unflatten_dict(flat_dct))
{'a': {'b': 1, 'c': {'d': 2}}, 'e': 3}
Args:
d (dict): A dictionary with flattened keys.
sep (str): The separator used in the keys.
Returns:
dict: A nested dictionary.
"""
outdict = {}
for key, value in d.items():
parts = key.split(sep)
@@ -183,6 +203,19 @@ def unflatten_dict(d: dict, sep: str = "/") -> dict:
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
"""Serialize a dictionary containing tensors or numpy arrays to be JSON-compatible.
Converts torch.Tensor, np.ndarray, and np.generic types to lists or native Python types.
Args:
stats (dict): A dictionary that may contain non-serializable numeric types.
Returns:
dict: A dictionary with all values converted to JSON-serializable types.
Raises:
NotImplementedError: If a value has an unsupported type.
"""
serialized_dict = {}
for key, value in flatten_dict(stats).items():
if isinstance(value, (torch.Tensor, np.ndarray)):
@@ -199,6 +232,17 @@ def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
"""Embed image bytes into the dataset table before saving to Parquet.
This function prepares a Hugging Face dataset for serialization by converting
image objects into an embedded format that can be stored in Arrow/Parquet.
Args:
dataset (datasets.Dataset): The input dataset, possibly containing image features.
Returns:
datasets.Dataset: The dataset with images embedded in the table storage.
"""
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
@@ -208,11 +252,27 @@ def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
def load_json(fpath: Path) -> Any:
"""Load data from a JSON file.
Args:
fpath (Path): Path to the JSON file.
Returns:
Any: The data loaded from the JSON file.
"""
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
"""Write data to a JSON file.
Creates parent directories if they don't exist.
Args:
data (dict): The dictionary to write.
fpath (Path): The path to the output JSON file.
"""
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
@@ -223,6 +283,16 @@ def write_info(info: dict, local_dir: Path) -> None:
def load_info(local_dir: Path) -> dict:
"""Load dataset info metadata from its standard file path.
Also converts shape lists to tuples for consistency.
Args:
local_dir (Path): The root directory of the dataset.
Returns:
dict: The dataset information dictionary.
"""
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
ft["shape"] = tuple(ft["shape"])
@@ -230,16 +300,40 @@ def load_info(local_dir: Path) -> dict:
def write_stats(stats: dict, local_dir: Path) -> None:
"""Serialize and write dataset statistics to their standard file path.
Args:
stats (dict): The statistics dictionary (can contain tensors/numpy arrays).
local_dir (Path): The root directory of the dataset.
"""
serialized_stats = serialize_dict(stats)
write_json(serialized_stats, local_dir / STATS_PATH)
def cast_stats_to_numpy(stats: dict) -> dict[str, dict[str, np.ndarray]]:
"""Recursively cast numerical values in a stats dictionary to numpy arrays.
Args:
stats (dict): The statistics dictionary.
Returns:
dict: The statistics dictionary with values cast to numpy arrays.
"""
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]] | None:
"""Load dataset statistics and cast numerical values to numpy arrays.
Returns None if the stats file doesn't exist.
Args:
local_dir (Path): The root directory of the dataset.
Returns:
A dictionary of statistics or None if the file is not found.
"""
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
@@ -297,6 +391,18 @@ def backward_compatible_episodes_stats(
def load_image_as_numpy(
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
) -> np.ndarray:
"""Load an image from a file into a numpy array.
Args:
fpath (str | Path): Path to the image file.
dtype (np.dtype): The desired data type of the output array. If floating,
pixels are scaled to [0, 1].
channel_first (bool): If True, converts the image to (C, H, W) format.
Otherwise, it remains in (H, W, C) format.
Returns:
np.ndarray: The image as a numpy array.
"""
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
@@ -307,10 +413,19 @@ def load_image_as_numpy(
def hf_transform_to_torch(items_dict: dict[str, list[Any]]) -> dict[str, list[torch.Tensor | str]]:
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
a channel last representation (h w c) of uint8 type, to a torch image representation
with channel first (c h w) of float32 type in range [0,1].
"""Convert a batch from a Hugging Face dataset to torch tensors.
This transform function converts items from Hugging Face dataset format (pyarrow)
to torch tensors. Importantly, images are converted from PIL objects (H, W, C, uint8)
to a torch image representation (C, H, W, float32) in the range [0, 1]. Other
types are converted to torch.tensor.
Args:
items_dict (dict): A dictionary representing a batch of data from a
Hugging Face dataset.
Returns:
dict: The batch with items converted to torch tensors.
"""
for key in items_dict:
first_item = items_dict[key][0]
@@ -325,6 +440,14 @@ def hf_transform_to_torch(items_dict: dict[str, list[Any]]) -> dict[str, list[to
def is_valid_version(version: str) -> bool:
"""Check if a string is a valid PEP 440 version.
Args:
version (str): The version string to check.
Returns:
bool: True if the version string is valid, False otherwise.
"""
try:
packaging.version.parse(version)
return True
@@ -338,6 +461,18 @@ def check_version_compatibility(
current_version: str | packaging.version.Version,
enforce_breaking_major: bool = True,
) -> None:
"""Check for version compatibility between a dataset and the current codebase.
Args:
repo_id (str): The repository ID for logging purposes.
version_to_check (str | packaging.version.Version): The version of the dataset.
current_version (str | packaging.version.Version): The current version of the codebase.
enforce_breaking_major (bool): If True, raise an error on major version mismatch.
Raises:
BackwardCompatibilityError: If the dataset version is from a newer, incompatible
major version of the codebase.
"""
v_check = (
packaging.version.parse(version_to_check)
if not isinstance(version_to_check, packaging.version.Version)
@@ -355,7 +490,14 @@ def check_version_compatibility(
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
"""Returns available valid versions (branches and tags) on given repo."""
"""Return available valid versions (branches and tags) on a given Hub repo.
Args:
repo_id (str): The repository ID on the Hugging Face Hub.
Returns:
list[packaging.version.Version]: A list of valid versions found.
"""
api = HfApi()
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
@@ -368,9 +510,22 @@ def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
"""
Returns the version if available on repo or the latest compatible one.
Otherwise, will throw a `CompatibilityError`.
"""Return the specified version if available on repo, or the latest compatible one.
If the exact version is not found, it looks for the latest version with the
same major version number that is less than or equal to the target minor version.
Args:
repo_id (str): The repository ID on the Hugging Face Hub.
version (str | packaging.version.Version): The target version.
Returns:
str: The safe version string (e.g., "v1.2.3") to use as a revision.
Raises:
RevisionNotFoundError: If the repo has no version tags.
BackwardCompatibilityError: If only older major versions are available.
ForwardCompatibilityError: If only newer major versions are available.
"""
target_version = (
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
@@ -412,6 +567,17 @@ def get_safe_version(repo_id: str, version: str | packaging.version.Version) ->
def get_hf_features_from_features(features: dict) -> datasets.Features:
"""Convert a LeRobot features dictionary to a `datasets.Features` object.
Args:
features (dict): A LeRobot-style feature dictionary.
Returns:
datasets.Features: The corresponding Hugging Face `datasets.Features` object.
Raises:
ValueError: If a feature has an unsupported shape.
"""
hf_features = {}
for key, ft in features.items():
if ft["dtype"] == "video":
@@ -439,6 +605,14 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
def _validate_feature_names(features: dict[str, dict]) -> None:
"""Validate that feature names do not contain invalid characters.
Args:
features (dict): The LeRobot features dictionary.
Raises:
ValueError: If any feature name contains '/'.
"""
invalid_features = {name: ft for name, ft in features.items() if "/" in name}
if invalid_features:
raise ValueError(f"Feature names should not contain '/'. Found '/' in '{invalid_features}'.")
@@ -447,8 +621,28 @@ def _validate_feature_names(features: dict[str, dict]) -> None:
def hw_to_dataset_features(
hw_features: dict[str, type | tuple], prefix: str, use_video: bool = True
) -> dict[str, dict]:
"""Convert hardware-specific features to a LeRobot dataset feature dictionary.
This function takes a dictionary describing hardware outputs (like joint states
or camera image shapes) and formats it into the standard LeRobot feature
specification.
Args:
hw_features (dict): Dictionary mapping feature names to their type (float for
joints) or shape (tuple for images).
prefix (str): The prefix to add to the feature keys (e.g., "observation"
or "action").
use_video (bool): If True, image features are marked as "video", otherwise "image".
Returns:
dict: A LeRobot features dictionary.
"""
features = {}
joint_fts = {key: ftype for key, ftype in hw_features.items() if ftype is float}
joint_fts = {
key: ftype
for key, ftype in hw_features.items()
if ftype is float or (isinstance(ftype, PolicyFeature) and ftype.type != FeatureType.VISUAL)
}
cam_fts = {key: shape for key, shape in hw_features.items() if isinstance(shape, tuple)}
if joint_fts and prefix == "action":
@@ -479,6 +673,20 @@ def hw_to_dataset_features(
def build_dataset_frame(
ds_features: dict[str, dict], values: dict[str, Any], prefix: str
) -> dict[str, np.ndarray]:
"""Construct a single data frame from raw values based on dataset features.
A "frame" is a dictionary containing all the data for a single timestep,
formatted as numpy arrays according to the feature specification.
Args:
ds_features (dict): The LeRobot dataset features dictionary.
values (dict): A dictionary of raw values from the hardware/environment.
prefix (str): The prefix to filter features by (e.g., "observation"
or "action").
Returns:
dict: A dictionary representing a single frame of data.
"""
frame = {}
for key, ft in ds_features.items():
if key in DEFAULT_FEATURES or not key.startswith(prefix):
@@ -492,6 +700,21 @@ def build_dataset_frame(
def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFeature]:
"""Convert dataset features to policy features.
This function transforms the dataset's feature specification into a format
that a policy can use, classifying features by type (e.g., visual, state,
action) and ensuring correct shapes (e.g., channel-first for images).
Args:
features (dict): The LeRobot dataset features dictionary.
Returns:
dict: A dictionary mapping feature keys to `PolicyFeature` objects.
Raises:
ValueError: If an image feature does not have a 3D shape.
"""
# TODO(aliberts): Implement "type" in dataset features and simplify this
policy_features = {}
for key, ft in features.items():
@@ -522,6 +745,58 @@ def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFea
return policy_features
def combine_feature_dicts(*dicts: dict) -> dict:
"""Merge LeRobot grouped feature dicts.
- For 1D numeric specs (dtype not image/video/string) with "names": we merge the names and recompute the shape.
- For others (e.g. `observation.images.*`), the last one wins (if they are identical).
Args:
*dicts: A variable number of LeRobot feature dictionaries to merge.
Returns:
dict: A single merged feature dictionary.
Raises:
ValueError: If there's a dtype mismatch for a feature being merged.
"""
out: dict = {}
for d in dicts:
for key, value in d.items():
if not isinstance(value, dict):
out[key] = value
continue
dtype = value.get("dtype")
shape = value.get("shape")
is_vector = (
dtype not in ("image", "video", "string")
and isinstance(shape, tuple)
and len(shape) == 1
and "names" in value
)
if is_vector:
# Initialize or retrieve the accumulating dict for this feature key
target = out.setdefault(key, {"dtype": dtype, "names": [], "shape": (0,)})
# Ensure consistent data types across merged entries
if "dtype" in target and dtype != target["dtype"]:
raise ValueError(f"dtype mismatch for '{key}': {target['dtype']} vs {dtype}")
# Merge feature names: append only new ones to preserve order without duplicates
seen = set(target["names"])
for n in value["names"]:
if n not in seen:
target["names"].append(n)
seen.add(n)
# Recompute the shape to reflect the updated number of features
target["shape"] = (len(target["names"]),)
else:
# For images/videos and non-1D entries: override with the latest definition
out[key] = value
return out
def create_empty_dataset_info(
codebase_version: str,
fps: int,
@@ -532,6 +807,18 @@ def create_empty_dataset_info(
data_files_size_in_mb: int | None = None,
video_files_size_in_mb: int | None = None,
) -> dict:
"""Create a template dictionary for a new dataset's `info.json`.
Args:
codebase_version (str): The version of the LeRobot codebase.
fps (int): The frames per second of the data.
features (dict): The LeRobot features dictionary for the dataset.
use_videos (bool): Whether the dataset will store videos.
robot_type (str | None): The type of robot used, if any.
Returns:
dict: A dictionary with the initial dataset metadata.
"""
return {
"codebase_version": codebase_version,
"robot_type": robot_type,
@@ -552,9 +839,23 @@ def create_empty_dataset_info(
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
actual timestamps from the dataset.
"""Check if delta timestamps are multiples of 1/fps +/- tolerance.
This ensures that adding these delta timestamps to any existing timestamp in
the dataset will result in a value that aligns with the dataset's frame rate.
Args:
delta_timestamps (dict): A dictionary where values are lists of time
deltas in seconds.
fps (int): The frames per second of the dataset.
tolerance_s (float): The allowed tolerance in seconds.
raise_value_error (bool): If True, raises an error on failure.
Returns:
bool: True if all deltas are valid, False otherwise.
Raises:
ValueError: If any delta is outside the tolerance and `raise_value_error` is True.
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
@@ -580,6 +881,15 @@ def check_delta_timestamps(
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
"""Convert delta timestamps in seconds to delta indices in frames.
Args:
delta_timestamps (dict): A dictionary of time deltas in seconds.
fps (int): The frames per second of the dataset.
Returns:
dict: A dictionary of frame delta indices.
"""
delta_indices = {}
for key, delta_ts in delta_timestamps.items():
delta_indices[key] = [round(d * fps) for d in delta_ts]
@@ -588,9 +898,17 @@ def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dic
def cycle(iterable: Any) -> Iterator[Any]:
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.
"""Create a dataloader-safe cyclical iterator.
See https://github.com/pytorch/pytorch/issues/23900 for information on why itertools.cycle is not safe.
This is an equivalent of `itertools.cycle` but is safe for use with
PyTorch DataLoaders with multiple workers.
See https://github.com/pytorch/pytorch/issues/23900 for details.
Args:
iterable: The iterable to cycle over.
Yields:
Items from the iterable, restarting from the beginning when exhausted.
"""
iterator = iter(iterable)
while True:
@@ -601,8 +919,14 @@ def cycle(iterable: Any) -> Iterator[Any]:
def create_branch(repo_id: str, *, branch: str, repo_type: str | None = None) -> None:
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""Create a branch on an existing Hugging Face repo.
Deletes the branch if it already exists before creating it.
Args:
repo_id (str): The ID of the repository.
branch (str): The name of the branch to create.
repo_type (str | None): The type of the repository (e.g., "dataset").
"""
api = HfApi()
@@ -620,9 +944,20 @@ def create_lerobot_dataset_card(
dataset_info: dict | None = None,
**kwargs,
) -> DatasetCard:
"""
Keyword arguments will be used to replace values in src/lerobot/datasets/card_template.md.
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
"""Create a `DatasetCard` for a LeRobot dataset.
Keyword arguments are used to replace values in the card template.
Note: If specified, `license` must be a valid license identifier from
https://huggingface.co/docs/hub/repositories-licenses.
Args:
tags (list | None): A list of tags to add to the dataset card.
dataset_info (dict | None): The dataset's info dictionary, which will
be displayed on the card.
**kwargs: Additional keyword arguments to populate the card template.
Returns:
DatasetCard: The generated dataset card object.
"""
card_tags = ["LeRobot"]
@@ -675,6 +1010,15 @@ def validate_frame(frame: dict, features: dict) -> None:
def validate_features_presence(actual_features: set[str], expected_features: set[str]) -> str:
"""Check for missing or extra features in a frame.
Args:
actual_features (set[str]): The set of feature names present in the frame.
expected_features (set[str]): The set of feature names expected in the frame.
Returns:
str: An error message string if there's a mismatch, otherwise an empty string.
"""
error_message = ""
missing_features = expected_features - actual_features
extra_features = actual_features - expected_features
@@ -692,6 +1036,19 @@ def validate_features_presence(actual_features: set[str], expected_features: set
def validate_feature_dtype_and_shape(
name: str, feature: dict, value: np.ndarray | PILImage.Image | str
) -> str:
"""Validate the dtype and shape of a single feature's value.
Args:
name (str): The name of the feature.
feature (dict): The feature specification from the LeRobot features dictionary.
value: The value of the feature to validate.
Returns:
str: An error message if validation fails, otherwise an empty string.
Raises:
NotImplementedError: If the feature dtype is not supported for validation.
"""
expected_dtype = feature["dtype"]
expected_shape = feature["shape"]
if is_valid_numpy_dtype_string(expected_dtype):
@@ -707,6 +1064,17 @@ def validate_feature_dtype_and_shape(
def validate_feature_numpy_array(
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
) -> str:
"""Validate a feature that is expected to be a numpy array.
Args:
name (str): The name of the feature.
expected_dtype (str): The expected numpy dtype as a string.
expected_shape (list[int]): The expected shape.
value (np.ndarray): The numpy array to validate.
Returns:
str: An error message if validation fails, otherwise an empty string.
"""
error_message = ""
if isinstance(value, np.ndarray):
actual_dtype = value.dtype
@@ -726,6 +1094,18 @@ def validate_feature_numpy_array(
def validate_feature_image_or_video(
name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image
) -> str:
"""Validate a feature that is expected to be an image or video frame.
Accepts `np.ndarray` (channel-first or channel-last) or `PIL.Image.Image`.
Args:
name (str): The name of the feature.
expected_shape (list[str]): The expected shape (C, H, W).
value: The image data to validate.
Returns:
str: An error message if validation fails, otherwise an empty string.
"""
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
error_message = ""
if isinstance(value, np.ndarray):
@@ -742,12 +1122,35 @@ def validate_feature_image_or_video(
def validate_feature_string(name: str, value: str) -> str:
"""Validate a feature that is expected to be a string.
Args:
name (str): The name of the feature.
value (str): The value to validate.
Returns:
str: An error message if validation fails, otherwise an empty string.
"""
if not isinstance(value, str):
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
return ""
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict) -> None:
"""Validate the episode buffer before it's written to disk.
Ensures the buffer has the required keys, contains at least one frame, and
has features consistent with the dataset's specification.
Args:
episode_buffer (dict): The buffer containing data for a single episode.
total_episodes (int): The current total number of episodes in the dataset.
features (dict): The LeRobot features dictionary for the dataset.
Raises:
ValueError: If the buffer is invalid.
NotImplementedError: If the episode index is manually set and doesn't match.
"""
if "size" not in episode_buffer:
raise ValueError("size key not found in episode_buffer")

View File

@@ -161,35 +161,73 @@ class XarmEnv(EnvConfig):
@dataclass
class VideoRecordConfig:
"""Configuration for video recording in ManiSkill environments."""
enabled: bool = False
record_dir: str = "videos"
trajectory_name: str = "trajectory"
class ImagePreprocessingConfig:
crop_params_dict: dict[str, tuple[int, int, int, int]] | None = None
resize_size: tuple[int, int] | None = None
@dataclass
class EnvTransformConfig:
"""Configuration for environment wrappers."""
class RewardClassifierConfig:
"""Configuration for reward classification."""
pretrained_path: str | None = None
success_threshold: float = 0.5
success_reward: float = 1.0
@dataclass
class InverseKinematicsConfig:
"""Configuration for inverse kinematics processing."""
urdf_path: str | None = None
target_frame_name: str | None = None
end_effector_bounds: dict[str, list[float]] | None = None
end_effector_step_sizes: dict[str, float] | None = None
@dataclass
class ObservationConfig:
"""Configuration for observation processing."""
# ee_action_space_params: EEActionSpaceConfig = field(default_factory=EEActionSpaceConfig)
control_mode: str = "gamepad"
display_cameras: bool = False
add_joint_velocity_to_observation: bool = False
add_current_to_observation: bool = False
add_ee_pose_to_observation: bool = False
crop_params_dict: dict[str, tuple[int, int, int, int]] | None = None
resize_size: tuple[int, int] | None = None
control_time_s: float = 20.0
fixed_reset_joint_positions: Any | None = None
reset_time_s: float = 5.0
display_cameras: bool = False
@dataclass
class GripperConfig:
"""Configuration for gripper control and penalties."""
use_gripper: bool = True
gripper_quantization_threshold: float | None = 0.8
gripper_penalty: float = 0.0
gripper_penalty_in_reward: bool = False
@dataclass
class ResetConfig:
"""Configuration for environment reset behavior."""
fixed_reset_joint_positions: Any | None = None
reset_time_s: float = 5.0
control_time_s: float = 20.0
terminate_on_success: bool = True
@dataclass
class HILSerlProcessorConfig:
"""Configuration for environment processing pipeline."""
control_mode: str = "gamepad"
observation: ObservationConfig | None = None
image_preprocessing: ImagePreprocessingConfig | None = None
gripper: GripperConfig | None = None
reset: ResetConfig | None = None
inverse_kinematics: InverseKinematicsConfig | None = None
reward_classifier: RewardClassifierConfig | None = None
max_gripper_pos: float | None = 100.0
@EnvConfig.register_subclass(name="gym_manipulator")
@dataclass
class HILSerlRobotEnvConfig(EnvConfig):
@@ -197,77 +235,10 @@ class HILSerlRobotEnvConfig(EnvConfig):
robot: RobotConfig | None = None
teleop: TeleoperatorConfig | None = None
wrapper: EnvTransformConfig | None = None
fps: int = 10
processor: HILSerlProcessorConfig = field(default_factory=HILSerlProcessorConfig)
name: str = "real_robot"
mode: str | None = None # Either "record", "replay", None
repo_id: str | None = None
dataset_root: str | None = None
task: str | None = ""
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: str | None = None
reward_classifier_pretrained_path: str | None = None
# For the reward classifier, to record more positive examples after a success
number_of_steps_after_success: int = 0
@property
def gym_kwargs(self) -> dict:
return {}
@EnvConfig.register_subclass("hil")
@dataclass
class HILEnvConfig(EnvConfig):
"""Configuration for the HIL environment."""
name: str = "PandaPickCube"
task: str | None = "PandaPickCubeKeyboard-v0"
use_viewer: bool = True
gripper_penalty: float = 0.0
use_gamepad: bool = True
state_dim: int = 18
action_dim: int = 4
fps: int = 100
episode_length: int = 100
video_record: VideoRecordConfig = field(default_factory=VideoRecordConfig)
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(4,)),
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(18,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"observation.image": OBS_IMAGE,
"observation.state": OBS_STATE,
}
)
################# args from hilserlrobotenv
reward_classifier_pretrained_path: str | None = None
robot_config: RobotConfig | None = None
teleop_config: TeleoperatorConfig | None = None
wrapper: EnvTransformConfig | None = None
mode: str | None = None # Either "record", "replay", None
repo_id: str | None = None
dataset_root: str | None = None
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: str | None = None
# For the reward classifier, to record more positive examples after a success
number_of_steps_after_success: int = 0
############################
@property
def gym_kwargs(self) -> dict:
return {
"use_viewer": self.use_viewer,
"use_gamepad": self.use_gamepad,
"gripper_penalty": self.gripper_penalty,
}

View File

@@ -17,7 +17,7 @@ import importlib
import gymnasium as gym
from lerobot.envs.configs import AlohaEnv, EnvConfig, HILEnvConfig, PushtEnv, XarmEnv
from lerobot.envs.configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv
def make_env_config(env_type: str, **kwargs) -> EnvConfig:
@@ -27,8 +27,6 @@ def make_env_config(env_type: str, **kwargs) -> EnvConfig:
return PushtEnv(**kwargs)
elif env_type == "xarm":
return XarmEnv(**kwargs)
elif env_type == "hil":
return HILEnvConfig(**kwargs)
else:
raise ValueError(f"Policy type '{env_type}' is not available.")

View File

@@ -127,9 +127,29 @@ def check_env_attributes_and_types(env: gym.vector.VectorEnv) -> None:
def add_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> dict[str, Any]:
"""Adds task feature to the observation dict with respect to the first environment attribute."""
if hasattr(env.envs[0], "task_description"):
observation["task"] = env.call("task_description")
task_result = env.call("task_description")
if isinstance(task_result, tuple):
task_result = list(task_result)
if not isinstance(task_result, list):
raise TypeError(f"Expected task_description to return a list, got {type(task_result)}")
if not all(isinstance(item, str) for item in task_result):
raise TypeError("All items in task_description result must be strings")
observation["task"] = task_result
elif hasattr(env.envs[0], "task"):
observation["task"] = env.call("task")
task_result = env.call("task")
if isinstance(task_result, tuple):
task_result = list(task_result)
if not isinstance(task_result, list):
raise TypeError(f"Expected task to return a list, got {type(task_result)}")
if not all(isinstance(item, str) for item in task_result):
raise TypeError("All items in task result must be strings")
observation["task"] = task_result
else: # For envs without language instructions, e.g. aloha transfer cube and etc.
num_envs = observation[list(observation.keys())[0]].shape[0]
observation["task"] = ["" for _ in range(num_envs)]

View File

@@ -15,6 +15,17 @@
from .act.configuration_act import ACTConfig as ACTConfig
from .diffusion.configuration_diffusion import DiffusionConfig as DiffusionConfig
from .pi0.configuration_pi0 import PI0Config as PI0Config
from .pi0.processor_pi0 import Pi0NewLineProcessor
from .smolvla.configuration_smolvla import SmolVLAConfig as SmolVLAConfig
from .smolvla.processor_smolvla import SmolVLANewLineProcessor
from .tdmpc.configuration_tdmpc import TDMPCConfig as TDMPCConfig
from .vqbet.configuration_vqbet import VQBeTConfig as VQBeTConfig
__all__ = [
"ACTConfig",
"DiffusionConfig",
"PI0Config",
"SmolVLAConfig",
"TDMPCConfig",
"VQBeTConfig",
]

View File

@@ -35,7 +35,6 @@ from torchvision.ops.misc import FrozenBatchNorm2d
from lerobot.constants import ACTION, OBS_IMAGES
from lerobot.policies.act.configuration_act import ACTConfig
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pretrained import PreTrainedPolicy
@@ -51,27 +50,16 @@ class ACTPolicy(PreTrainedPolicy):
def __init__(
self,
config: ACTConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.model = ACT(config)
if config.temporal_ensemble_coeff is not None:
@@ -137,23 +125,19 @@ class ACTPolicy(PreTrainedPolicy):
"""Predict a chunk of actions given environment observations."""
self.eval()
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGES] = [batch[key] for key in self.config.image_features]
actions = self.model(batch)[0]
actions = self.unnormalize_outputs({ACTION: actions})[ACTION]
return actions
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, dict]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGES] = [batch[key] for key in self.config.image_features]
batch = self.normalize_targets(batch)
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
l1_loss = (

View File

@@ -0,0 +1,85 @@
#!/usr/bin/env python
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.act.configuration_act import ACTConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_act_pre_post_processors(
config: ACTConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""Creates the pre- and post-processing pipelines for the ACT policy.
The pre-processing pipeline handles normalization, batching, and device placement for the model inputs.
The post-processing pipeline handles unnormalization and moves the model outputs back to the CPU.
Args:
config (ACTConfig): The ACT policy configuration object.
dataset_stats (dict[str, dict[str, torch.Tensor]] | None): A dictionary containing dataset
statistics (e.g., mean and std) used for normalization. Defaults to None.
Returns:
tuple[PolicyProcessorPipeline[dict[str, Any], dict[str, Any]], PolicyProcessorPipeline[PolicyAction, PolicyAction]]: A tuple containing the
pre-processor pipeline and the post-processor pipeline.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}),
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
device=config.device,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -35,7 +35,6 @@ from torch import Tensor, nn
from lerobot.constants import ACTION, OBS_ENV_STATE, OBS_IMAGES, OBS_STATE
from lerobot.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import (
get_device_from_parameters,
@@ -57,7 +56,6 @@ class DiffusionPolicy(PreTrainedPolicy):
def __init__(
self,
config: DiffusionConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
@@ -70,14 +68,6 @@ class DiffusionPolicy(PreTrainedPolicy):
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
# queues are populated during rollout of the policy, they contain the n latest observations and actions
self._queues = None
@@ -106,9 +96,6 @@ class DiffusionPolicy(PreTrainedPolicy):
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
actions = self.unnormalize_outputs({ACTION: actions})[ACTION]
return actions
@torch.no_grad()
@@ -137,7 +124,6 @@ class DiffusionPolicy(PreTrainedPolicy):
if ACTION in batch:
batch.pop(ACTION)
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGES] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
@@ -153,11 +139,9 @@ class DiffusionPolicy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, None]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGES] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
batch = self.normalize_targets(batch)
loss = self.diffusion.compute_loss(batch)
# no output_dict so returning None
return loss, None

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_diffusion_pre_post_processors(
config: DiffusionConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for a diffusion policy.
The pre-processing pipeline prepares the input data for the model by:
1. Renaming features.
2. Normalizing the input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Moving the data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving the data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the diffusion policy,
containing feature definitions, normalization mappings, and device information.
dataset_stats: A dictionary of statistics used for normalization.
Defaults to None.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}),
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -14,12 +14,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from __future__ import annotations
from torch import nn
import logging
from typing import Any, TypedDict
import torch
from typing_extensions import Unpack
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import FeatureType
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.datasets.lerobot_dataset import LeRobotDatasetMetadata
from lerobot.datasets.utils import dataset_to_policy_features
from lerobot.envs.configs import EnvConfig
@@ -34,10 +39,32 @@ from lerobot.policies.sac.reward_model.configuration_classifier import RewardCla
from lerobot.policies.smolvla.configuration_smolvla import SmolVLAConfig
from lerobot.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
from lerobot.processor.converters import (
batch_to_transition,
policy_action_to_transition,
transition_to_batch,
transition_to_policy_action,
)
def get_policy_class(name: str) -> PreTrainedPolicy:
"""Get the policy's class and config class given a name (matching the policy class' `name` attribute)."""
def get_policy_class(name: str) -> type[PreTrainedPolicy]:
"""
Retrieves a policy class by its registered name.
This function uses dynamic imports to avoid loading all policy classes into memory
at once, improving startup time and reducing dependencies.
Args:
name: The name of the policy. Supported names are "tdmpc", "diffusion", "act",
"vqbet", "pi0", "pi0fast", "sac", "reward_classifier", "smolvla".
Returns:
The policy class corresponding to the given name.
Raises:
NotImplementedError: If the policy name is not recognized.
"""
if name == "tdmpc":
from lerobot.policies.tdmpc.modeling_tdmpc import TDMPCPolicy
@@ -79,6 +106,24 @@ def get_policy_class(name: str) -> PreTrainedPolicy:
def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
"""
Instantiates a policy configuration object based on the policy type.
This factory function simplifies the creation of policy configuration objects by
mapping a string identifier to the corresponding config class.
Args:
policy_type: The type of the policy. Supported types include "tdmpc",
"diffusion", "act", "vqbet", "pi0", "pi0fast", "sac", "smolvla",
"reward_classifier".
**kwargs: Keyword arguments to be passed to the configuration class constructor.
Returns:
An instance of a `PreTrainedConfig` subclass.
Raises:
ValueError: If the `policy_type` is not recognized.
"""
if policy_type == "tdmpc":
return TDMPCConfig(**kwargs)
elif policy_type == "diffusion":
@@ -101,30 +146,187 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
raise ValueError(f"Policy type '{policy_type}' is not available.")
class ProcessorConfigKwargs(TypedDict, total=False):
"""
A TypedDict defining the keyword arguments for processor configuration.
This provides type hints for the optional arguments passed to `make_pre_post_processors`,
improving code clarity and enabling static analysis.
Attributes:
preprocessor_config_filename: The filename for the preprocessor configuration.
postprocessor_config_filename: The filename for the postprocessor configuration.
preprocessor_overrides: A dictionary of overrides for the preprocessor configuration.
postprocessor_overrides: A dictionary of overrides for the postprocessor configuration.
dataset_stats: Dataset statistics for normalization.
"""
preprocessor_config_filename: str | None
postprocessor_config_filename: str | None
preprocessor_overrides: dict[str, Any] | None
postprocessor_overrides: dict[str, Any] | None
dataset_stats: dict[str, dict[str, torch.Tensor]] | None
def make_pre_post_processors(
policy_cfg: PreTrainedConfig,
pretrained_path: str | None = None,
**kwargs: Unpack[ProcessorConfigKwargs],
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Create or load pre- and post-processor pipelines for a given policy.
This function acts as a factory. It can either load existing processor pipelines
from a pretrained path or create new ones from scratch based on the policy
configuration. Each policy type has a dedicated factory function for its
processors (e.g., `make_tdmpc_pre_post_processors`).
Args:
policy_cfg: The configuration of the policy for which to create processors.
pretrained_path: An optional path to load pretrained processor pipelines from.
If provided, pipelines are loaded from this path.
**kwargs: Keyword arguments for processor configuration, as defined in
`ProcessorConfigKwargs`.
Returns:
A tuple containing the input (pre-processor) and output (post-processor) pipelines.
Raises:
NotImplementedError: If a processor factory is not implemented for the given
policy configuration type.
"""
if pretrained_path:
return (
PolicyProcessorPipeline.from_pretrained(
pretrained_model_name_or_path=pretrained_path,
config_filename=kwargs.get(
"preprocessor_config_filename", f"{POLICY_PREPROCESSOR_DEFAULT_NAME}.json"
),
overrides=kwargs.get("preprocessor_overrides", {}),
to_transition=batch_to_transition,
to_output=transition_to_batch,
),
PolicyProcessorPipeline.from_pretrained(
pretrained_model_name_or_path=pretrained_path,
config_filename=kwargs.get(
"postprocessor_config_filename", f"{POLICY_POSTPROCESSOR_DEFAULT_NAME}.json"
),
overrides=kwargs.get("postprocessor_overrides", {}),
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)
# Create a new processor based on policy type
if isinstance(policy_cfg, TDMPCConfig):
from lerobot.policies.tdmpc.processor_tdmpc import make_tdmpc_pre_post_processors
processors = make_tdmpc_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, DiffusionConfig):
from lerobot.policies.diffusion.processor_diffusion import make_diffusion_pre_post_processors
processors = make_diffusion_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, ACTConfig):
from lerobot.policies.act.processor_act import make_act_pre_post_processors
processors = make_act_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, VQBeTConfig):
from lerobot.policies.vqbet.processor_vqbet import make_vqbet_pre_post_processors
processors = make_vqbet_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, PI0Config):
from lerobot.policies.pi0.processor_pi0 import make_pi0_pre_post_processors
processors = make_pi0_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, PI0FASTConfig):
from lerobot.policies.pi0fast.processor_pi0fast import make_pi0fast_pre_post_processors
processors = make_pi0fast_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, SACConfig):
from lerobot.policies.sac.processor_sac import make_sac_pre_post_processors
processors = make_sac_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, RewardClassifierConfig):
from lerobot.policies.sac.reward_model.processor_classifier import make_classifier_processor
processors = make_classifier_processor(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
elif isinstance(policy_cfg, SmolVLAConfig):
from lerobot.policies.smolvla.processor_smolvla import make_smolvla_pre_post_processors
processors = make_smolvla_pre_post_processors(
config=policy_cfg,
dataset_stats=kwargs.get("dataset_stats"),
)
else:
raise NotImplementedError(f"Processor for policy type '{policy_cfg.type}' is not implemented.")
return processors
def make_policy(
cfg: PreTrainedConfig,
ds_meta: LeRobotDatasetMetadata | None = None,
env_cfg: EnvConfig | None = None,
) -> PreTrainedPolicy:
"""Make an instance of a policy class.
"""
Instantiate a policy model.
This function exists because (for now) we need to parse features from either a dataset or an environment
in order to properly dimension and instantiate a policy for that dataset or environment.
This factory function handles the logic of creating a policy, which requires
determining the input and output feature shapes. These shapes can be derived
either from a `LeRobotDatasetMetadata` object or an `EnvConfig` object. The function
can either initialize a new policy from scratch or load a pretrained one.
Args:
cfg (PreTrainedConfig): The config of the policy to make. If `pretrained_path` is set, the policy will
be loaded with the weights from that path.
ds_meta (LeRobotDatasetMetadata | None, optional): Dataset metadata to take input/output shapes and
statistics to use for (un)normalization of inputs/outputs in the policy. Defaults to None.
env_cfg (EnvConfig | None, optional): The config of a gym environment to parse features from. Must be
provided if ds_meta is not. Defaults to None.
Raises:
ValueError: Either ds_meta or env and env_cfg must be provided.
NotImplementedError: if the policy.type is 'vqbet' and the policy device 'mps' (due to an incompatibility)
cfg: The configuration for the policy to be created. If `cfg.pretrained_path` is
set, the policy will be loaded with weights from that path.
ds_meta: Dataset metadata used to infer feature shapes and types. Also provides
statistics for normalization layers.
env_cfg: Environment configuration used to infer feature shapes and types.
One of `ds_meta` or `env_cfg` must be provided.
Returns:
PreTrainedPolicy: _description_
An instantiated and device-placed policy model.
Raises:
ValueError: If both or neither of `ds_meta` and `env_cfg` are provided.
NotImplementedError: If attempting to use an unsupported policy-backend
combination (e.g., VQBeT with 'mps').
"""
if bool(ds_meta) == bool(env_cfg):
raise ValueError("Either one of a dataset metadata or a sim env must be provided.")
@@ -147,7 +349,6 @@ def make_policy(
kwargs = {}
if ds_meta is not None:
features = dataset_to_policy_features(ds_meta.features)
kwargs["dataset_stats"] = ds_meta.stats
else:
if not cfg.pretrained_path:
logging.warning(
@@ -155,6 +356,8 @@ def make_policy(
"rather than a dataset. Normalization modules inside the policy will have infinite values "
"by default without stats from a dataset."
)
if env_cfg is None:
raise ValueError("env_cfg cannot be None when ds_meta is not provided")
features = env_to_policy_features(env_cfg)
cfg.output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
@@ -171,7 +374,7 @@ def make_policy(
policy = policy_cls(**kwargs)
policy.to(cfg.device)
assert isinstance(policy, nn.Module)
assert isinstance(policy, torch.nn.Module)
# policy = torch.compile(policy, mode="reduce-overhead")

View File

@@ -1,420 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from torch import Tensor, nn
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
def create_stats_buffers(
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
) -> dict[str, dict[str, nn.ParameterDict]]:
"""
Create buffers per modality (e.g. "observation.image", "action") containing their mean, std, min, max
statistics.
Args: (see Normalize and Unnormalize)
Returns:
dict: A dictionary where keys are modalities and values are `nn.ParameterDict` containing
`nn.Parameters` set to `requires_grad=False`, suitable to not be updated during backpropagation.
"""
stats_buffers = {}
for key, ft in features.items():
norm_mode = norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
assert isinstance(norm_mode, NormalizationMode)
shape = tuple(ft.shape)
if ft.type is FeatureType.VISUAL:
# sanity checks
assert len(shape) == 3, f"number of dimensions of {key} != 3 ({shape=}"
c, h, w = shape
assert c < h and c < w, f"{key} is not channel first ({shape=})"
# override image shape to be invariant to height and width
shape = (c, 1, 1)
# Note: we initialize mean, std, min, max to infinity. They should be overwritten
# downstream by `stats` or `policy.load_state_dict`, as expected. During forward,
# we assert they are not infinity anymore.
buffer = {}
if norm_mode is NormalizationMode.MEAN_STD:
mean = torch.ones(shape, dtype=torch.float32) * torch.inf
std = torch.ones(shape, dtype=torch.float32) * torch.inf
buffer = nn.ParameterDict(
{
"mean": nn.Parameter(mean, requires_grad=False),
"std": nn.Parameter(std, requires_grad=False),
}
)
elif norm_mode is NormalizationMode.MIN_MAX:
min = torch.ones(shape, dtype=torch.float32) * torch.inf
max = torch.ones(shape, dtype=torch.float32) * torch.inf
buffer = nn.ParameterDict(
{
"min": nn.Parameter(min, requires_grad=False),
"max": nn.Parameter(max, requires_grad=False),
}
)
# TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
if stats:
if isinstance(stats[key]["mean"], np.ndarray):
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
else:
type_ = type(stats[key]["mean"])
raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")
stats_buffers[key] = buffer
return stats_buffers
def _no_stats_error_str(name: str) -> str:
return (
f"`{name}` is infinity. You should either initialize with `stats` as an argument, or use a "
"pretrained model."
)
class Normalize(nn.Module):
"""Normalizes data (e.g. "observation.image") for more stable and faster convergence during training."""
def __init__(
self,
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
are their normalization modes among:
- "mean_std": subtract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
and values are dictionaries of statistic types and their values (e.g.
`{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
training the model for the first time, these statistics will overwrite the default buffers. If
not provided, as expected for finetuning or evaluation, the default buffers should to be
overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
dataset is not needed to get the stats, since they are already in the policy state_dict.
"""
super().__init__()
self.features = features
self.norm_map = norm_map
self.stats = stats
stats_buffers = create_stats_buffers(features, norm_map, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
# TODO: Remove this shallow copy
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():
if key not in batch:
# FIXME(aliberts, rcadene): This might lead to silent fail!
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if norm_mode is NormalizationMode.MEAN_STD:
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
batch[key] = (batch[key] - mean) / (std + 1e-8)
elif norm_mode is NormalizationMode.MIN_MAX:
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(min).any(), _no_stats_error_str("min")
assert not torch.isinf(max).any(), _no_stats_error_str("max")
# normalize to [0,1]
batch[key] = (batch[key] - min) / (max - min + 1e-8)
# normalize to [-1, 1]
batch[key] = batch[key] * 2 - 1
else:
raise ValueError(norm_mode)
return batch
class Unnormalize(nn.Module):
"""
Similar to `Normalize` but unnormalizes output data (e.g. `{"action": torch.randn(b,c)}`) in their
original range used by the environment.
"""
def __init__(
self,
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
shapes (dict): A dictionary where keys are input modalities (e.g. "observation.image") and values
are their shapes (e.g. `[3,96,96]`]). These shapes are used to create the tensor buffer containing
mean, std, min, max statistics. If the provided `shapes` contain keys related to images, the shape
is adjusted to be invariant to height and width, assuming a channel-first (c, h, w) format.
modes (dict): A dictionary where keys are output modalities (e.g. "observation.image") and values
are their normalization modes among:
- "mean_std": subtract the mean and divide by standard deviation.
- "min_max": map to [-1, 1] range.
stats (dict, optional): A dictionary where keys are output modalities (e.g. "observation.image")
and values are dictionaries of statistic types and their values (e.g.
`{"mean": torch.randn(3,1,1)}, "std": torch.randn(3,1,1)}`). If provided, as expected for
training the model for the first time, these statistics will overwrite the default buffers. If
not provided, as expected for finetuning or evaluation, the default buffers should to be
overwritten by a call to `policy.load_state_dict(state_dict)`. That way, initializing the
dataset is not needed to get the stats, since they are already in the policy state_dict.
"""
super().__init__()
self.features = features
self.norm_map = norm_map
self.stats = stats
# `self.buffer_observation_state["mean"]` contains `torch.tensor(state_dim)`
stats_buffers = create_stats_buffers(features, norm_map, stats)
for key, buffer in stats_buffers.items():
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():
if key not in batch:
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
if norm_mode is NormalizationMode.MEAN_STD:
mean = buffer["mean"]
std = buffer["std"]
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
batch[key] = batch[key] * std + mean
elif norm_mode is NormalizationMode.MIN_MAX:
min = buffer["min"]
max = buffer["max"]
assert not torch.isinf(min).any(), _no_stats_error_str("min")
assert not torch.isinf(max).any(), _no_stats_error_str("max")
batch[key] = (batch[key] + 1) / 2
batch[key] = batch[key] * (max - min) + min
else:
raise ValueError(norm_mode)
return batch
# TODO (azouitine): We should replace all normalization on the policies with register_buffer normalization
# and remove the `Normalize` and `Unnormalize` classes.
def _initialize_stats_buffers(
module: nn.Module,
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
) -> None:
"""Register statistics buffers (mean/std or min/max) on the given *module*.
The logic matches the previous constructors of `NormalizeBuffer` and `UnnormalizeBuffer`,
but is factored out so it can be reused by both classes and stay in sync.
"""
for key, ft in features.items():
norm_mode = norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
shape: tuple[int, ...] = tuple(ft.shape)
if ft.type is FeatureType.VISUAL:
# reduce spatial dimensions, keep channel dimension only
c, *_ = shape
shape = (c, 1, 1)
prefix = key.replace(".", "_")
if norm_mode is NormalizationMode.MEAN_STD:
mean = torch.full(shape, torch.inf, dtype=torch.float32)
std = torch.full(shape, torch.inf, dtype=torch.float32)
if stats and key in stats and "mean" in stats[key] and "std" in stats[key]:
mean_data = stats[key]["mean"]
std_data = stats[key]["std"]
if isinstance(mean_data, torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
mean = mean_data.clone().to(dtype=torch.float32)
std = std_data.clone().to(dtype=torch.float32)
else:
raise ValueError(f"Unsupported stats type for key '{key}' (expected ndarray or Tensor).")
module.register_buffer(f"{prefix}_mean", mean)
module.register_buffer(f"{prefix}_std", std)
continue
if norm_mode is NormalizationMode.MIN_MAX:
min_val = torch.full(shape, torch.inf, dtype=torch.float32)
max_val = torch.full(shape, torch.inf, dtype=torch.float32)
if stats and key in stats and "min" in stats[key] and "max" in stats[key]:
min_data = stats[key]["min"]
max_data = stats[key]["max"]
if isinstance(min_data, torch.Tensor):
min_val = min_data.clone().to(dtype=torch.float32)
max_val = max_data.clone().to(dtype=torch.float32)
else:
raise ValueError(f"Unsupported stats type for key '{key}' (expected ndarray or Tensor).")
module.register_buffer(f"{prefix}_min", min_val)
module.register_buffer(f"{prefix}_max", max_val)
continue
raise ValueError(norm_mode)
class NormalizeBuffer(nn.Module):
"""Same as `Normalize` but statistics are stored as registered buffers rather than parameters."""
def __init__(
self,
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
):
super().__init__()
self.features = features
self.norm_map = norm_map
_initialize_stats_buffers(self, features, norm_map, stats)
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch)
for key, ft in self.features.items():
if key not in batch:
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
prefix = key.replace(".", "_")
if norm_mode is NormalizationMode.MEAN_STD:
mean = getattr(self, f"{prefix}_mean")
std = getattr(self, f"{prefix}_std")
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
batch[key] = (batch[key] - mean) / (std + 1e-8)
continue
if norm_mode is NormalizationMode.MIN_MAX:
min_val = getattr(self, f"{prefix}_min")
max_val = getattr(self, f"{prefix}_max")
assert not torch.isinf(min_val).any(), _no_stats_error_str("min")
assert not torch.isinf(max_val).any(), _no_stats_error_str("max")
batch[key] = (batch[key] - min_val) / (max_val - min_val + 1e-8)
batch[key] = batch[key] * 2 - 1
continue
raise ValueError(norm_mode)
return batch
class UnnormalizeBuffer(nn.Module):
"""Inverse operation of `NormalizeBuffer`. Uses registered buffers for statistics."""
def __init__(
self,
features: dict[str, PolicyFeature],
norm_map: dict[str, NormalizationMode],
stats: dict[str, dict[str, Tensor]] | None = None,
):
super().__init__()
self.features = features
self.norm_map = norm_map
_initialize_stats_buffers(self, features, norm_map, stats)
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
# batch = dict(batch)
for key, ft in self.features.items():
if key not in batch:
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
if norm_mode is NormalizationMode.IDENTITY:
continue
prefix = key.replace(".", "_")
if norm_mode is NormalizationMode.MEAN_STD:
mean = getattr(self, f"{prefix}_mean")
std = getattr(self, f"{prefix}_std")
assert not torch.isinf(mean).any(), _no_stats_error_str("mean")
assert not torch.isinf(std).any(), _no_stats_error_str("std")
batch[key] = batch[key] * std + mean
continue
if norm_mode is NormalizationMode.MIN_MAX:
min_val = getattr(self, f"{prefix}_min")
max_val = getattr(self, f"{prefix}_max")
assert not torch.isinf(min_val).any(), _no_stats_error_str("min")
assert not torch.isinf(max_val).any(), _no_stats_error_str("max")
batch[key] = (batch[key] + 1) / 2
batch[key] = batch[key] * (max_val - min_val) + min_val
continue
raise ValueError(norm_mode)
return batch

View File

@@ -56,18 +56,15 @@ from collections import deque
import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.constants import ACTION, OBS_STATE
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.constants import ACTION, OBS_LANGUAGE_ATTENTION_MASK, OBS_LANGUAGE_TOKENS, OBS_STATE
from lerobot.policies.pi0.configuration_pi0 import PI0Config
from lerobot.policies.pi0.paligemma_with_expert import (
PaliGemmaWithExpertConfig,
PaliGemmaWithExpertModel,
)
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import log_model_loading_keys
from lerobot.utils.utils import get_safe_dtype, init_logging
from lerobot.utils.utils import get_safe_dtype
def create_sinusoidal_pos_embedding(
@@ -223,28 +220,17 @@ class PI0Policy(PreTrainedPolicy):
def __init__(
self,
config: PI0Config,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoTokenizer.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FlowMatching(config)
self.reset()
@@ -253,99 +239,6 @@ class PI0Policy(PreTrainedPolicy):
"""This should be called whenever the environment is reset."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
@classmethod
def _transform_state_dict_keys(cls, state_dict: dict) -> dict:
"""
Transform state dict keys to match expected model structure.
Transformations:
- model.paligemma_with_expert.paligemma.language_model.lm_head ->
model.paligemma_with_expert.paligemma.lm_head
- model.paligemma_with_expert.paligemma.language_model.model ->
model.paligemma_with_expert.paligemma.model.language_model
- model.paligemma_with_expert.paligemma.vision_tower ->
model.paligemma_with_expert.paligemma.model.vision_tower
- model.paligemma_with_expert.paligemma.multi_modal_projector ->
model.paligemma_with_expert.paligemma.model.multi_modal_projector
Also handles tied weights between lm_head.weight and
embed_tokens.weight.
"""
import re
transformed_dict = {}
transformations = [
(
re.compile(r"\.paligemma_with_expert\.paligemma\.language_model\.lm_head"),
".paligemma_with_expert.paligemma.lm_head",
),
(
re.compile(r"\.paligemma_with_expert\.paligemma\.language_model\.model"),
".paligemma_with_expert.paligemma.model.language_model",
),
(
re.compile(r"\.paligemma_with_expert\.paligemma\.vision_tower"),
".paligemma_with_expert.paligemma.model.vision_tower",
),
(
re.compile(r"\.paligemma_with_expert\.paligemma\.multi_modal_projector"),
".paligemma_with_expert.paligemma.model.multi_modal_projector",
),
]
for key, value in state_dict.items():
new_key = key
for pattern, replacement in transformations:
new_key = pattern.sub(replacement, new_key)
transformed_dict[new_key] = value
# Handle tied weights: lm_head.weight and embed_tokens.weight share memory
lm_head_key = None
embed_tokens_key = None
for key in transformed_dict:
if key.endswith(".paligemma_with_expert.paligemma.lm_head.weight"):
lm_head_key = key
elif key.endswith(".paligemma_with_expert.paligemma.model.language_model.embed_tokens.weight"):
embed_tokens_key = key
if lm_head_key and embed_tokens_key:
break
if lm_head_key and not embed_tokens_key:
embed_tokens_key = lm_head_key.replace(
".lm_head.weight", ".model.language_model.embed_tokens.weight"
)
transformed_dict[embed_tokens_key] = transformed_dict[lm_head_key]
elif embed_tokens_key and not lm_head_key:
lm_head_key = embed_tokens_key.replace(
".model.language_model.embed_tokens.weight", ".lm_head.weight"
)
transformed_dict[lm_head_key] = transformed_dict[embed_tokens_key]
return transformed_dict
@classmethod
def _load_as_safetensor(
cls, model: "PI0Policy", model_file: str, map_location: str, strict: bool
) -> "PI0Policy":
"""Override to apply key transformations before loading."""
from safetensors.torch import load_file
init_logging()
# Load the state dict from file safely
state_dict = load_file(model_file, device=map_location)
# Apply key transformations
transformed_state_dict = cls._transform_state_dict_keys(state_dict)
# Load the transformed state dict
msg = model.load_state_dict(transformed_state_dict, strict=strict)
# Log message
log_model_loading_keys(msg.missing_keys, msg.unexpected_keys)
return model
def get_optim_params(self) -> dict:
return self.parameters()
@@ -377,14 +270,13 @@ class PI0Policy(PreTrainedPolicy):
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
lang_tokens = batch[f"{OBS_LANGUAGE_TOKENS}"]
lang_masks = batch[f"{OBS_LANGUAGE_ATTENTION_MASK}"]
actions = self.model.sample_actions(
images, img_masks, lang_tokens, lang_masks, state, noise=noise
@@ -394,8 +286,6 @@ class PI0Policy(PreTrainedPolicy):
original_action_dim = self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
@@ -410,12 +300,10 @@ class PI0Policy(PreTrainedPolicy):
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
lang_tokens = batch[f"{OBS_LANGUAGE_TOKENS}"]
lang_masks = batch[f"{OBS_LANGUAGE_ATTENTION_MASK}"]
actions = self.prepare_action(batch)
actions_is_pad = batch.get("action_is_pad")
@@ -482,26 +370,6 @@ class PI0Policy(PreTrainedPolicy):
return images, img_masks
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_STATE].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
tasks = [task if task.endswith("\n") else f"{task}\n" for task in tasks]
tokenized_prompt = self.language_tokenizer.__call__(
tasks,
padding="max_length",
padding_side="right",
max_length=self.config.tokenizer_max_length,
return_tensors="pt",
)
lang_tokens = tokenized_prompt["input_ids"].to(device=device)
lang_masks = tokenized_prompt["attention_mask"].to(device=device, dtype=torch.bool)
return lang_tokens, lang_masks
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
@@ -567,7 +435,7 @@ class PI0FlowMatching(nn.Module):
└──────────────────────────────┘
"""
def __init__(self, config):
def __init__(self, config: PI0Config):
super().__init__()
self.config = config

View File

@@ -0,0 +1,166 @@
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.pi0.configuration_pi0 import PI0Config
from lerobot.processor import (
AddBatchDimensionProcessorStep,
ComplementaryDataProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
ProcessorStep,
ProcessorStepRegistry,
RenameObservationsProcessorStep,
TokenizerProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
@ProcessorStepRegistry.register(name="pi0_new_line_processor")
class Pi0NewLineProcessor(ComplementaryDataProcessorStep):
"""
Ensures that the task description string ends with a newline character.
This processing step is required for compatibility with the PaliGemma tokenizer,
which expects a newline at the end of the text prompt. It handles both single
strings and lists of strings for the 'task' key in complementary data.
"""
def complementary_data(self, complementary_data):
"""
Adds a newline to the 'task' field if it doesn't already have one.
Args:
complementary_data: A dictionary that may contain a 'task' key with a
string or list of strings.
Returns:
A new dictionary with the modified 'task' field.
"""
if "task" not in complementary_data:
return complementary_data
task = complementary_data["task"]
if task is None:
return complementary_data
new_complementary_data = dict(complementary_data)
# Handle both string and list of strings
if isinstance(task, str):
# Single string: add newline if not present
if not task.endswith("\n"):
new_complementary_data["task"] = f"{task}\n"
elif isinstance(task, list) and all(isinstance(t, str) for t in task):
# List of strings: add newline to each if not present
new_complementary_data["task"] = [t if t.endswith("\n") else f"{t}\n" for t in task]
# If task is neither string nor list of strings, leave unchanged
return new_complementary_data
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
This step does not alter the feature definitions.
Args:
features: The input feature dictionary.
Returns:
The unchanged feature dictionary.
"""
return features
def make_pi0_pre_post_processors(
config: PI0Config,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the PI0 policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Appending a newline character to the task description for tokenizer compatibility.
5. Tokenizing the text prompt using the PaliGemma tokenizer.
6. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the PI0 policy.
dataset_stats: A dictionary of statistics for normalization.
preprocessor_kwargs: Additional arguments for the pre-processor pipeline.
postprocessor_kwargs: Additional arguments for the post-processor pipeline.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
# Add remaining processors
input_steps: list[ProcessorStep] = [
RenameObservationsProcessorStep(rename_map={}), # To mimic the same processor as pretrained one
AddBatchDimensionProcessorStep(),
Pi0NewLineProcessor(), # Add newlines before tokenization for PaliGemma
TokenizerProcessorStep(
tokenizer_name="google/paligemma-3b-pt-224",
max_length=config.tokenizer_max_length,
padding_side="right",
padding="max_length",
),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps: list[ProcessorStep] = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -58,7 +58,6 @@ from transformers.cache_utils import HybridCache, StaticCache
from transformers.models.auto import CONFIG_MAPPING
from lerobot.constants import ACTION, OBS_STATE
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.policies.pretrained import PreTrainedPolicy
@@ -146,14 +145,6 @@ class PI0FASTPolicy(PreTrainedPolicy):
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FAST(config)
@@ -221,8 +212,6 @@ class PI0FASTPolicy(PreTrainedPolicy):
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
@@ -235,8 +224,6 @@ class PI0FASTPolicy(PreTrainedPolicy):
] # self.config.max_action_dim # self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
@@ -249,8 +236,6 @@ class PI0FASTPolicy(PreTrainedPolicy):
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
loss_dict = self.model.forward(batch)
return loss_dict["loss"], loss_dict

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_pi0fast_pre_post_processors(
config: PI0FASTConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the PI0Fast policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the PI0Fast policy.
dataset_stats: A dictionary of statistics for normalization.
preprocessor_kwargs: Additional arguments for the pre-processor pipeline.
postprocessor_kwargs: Additional arguments for the post-processor pipeline.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}), # To mimic the same processor as pretrained one
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -28,7 +28,6 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor
from torch.distributions import MultivariateNormal, TanhTransform, Transform, TransformedDistribution
from lerobot.policies.normalize import NormalizeBuffer
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.sac.configuration_sac import SACConfig, is_image_feature
from lerobot.policies.utils import get_device_from_parameters
@@ -45,7 +44,6 @@ class SACPolicy(
def __init__(
self,
config: SACConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
super().__init__(config)
config.validate_features()
@@ -53,7 +51,6 @@ class SACPolicy(
# Determine action dimension and initialize all components
continuous_action_dim = config.output_features["action"].shape[0]
self._init_normalization(dataset_stats)
self._init_encoders()
self._init_critics(continuous_action_dim)
self._init_actor(continuous_action_dim)
@@ -88,8 +85,7 @@ class SACPolicy(
observations_features = None
if self.shared_encoder and self.actor.encoder.has_images:
# Cache and normalize image features
observations_features = self.actor.encoder.get_cached_image_features(batch, normalize=True)
observations_features = self.actor.encoder.get_cached_image_features(batch)
actions, _, _ = self.actor(batch, observations_features)
@@ -391,28 +387,12 @@ class SACPolicy(
actor_loss = ((self.temperature * log_probs) - min_q_preds).mean()
return actor_loss
def _init_normalization(self, dataset_stats):
"""Initialize input/output normalization modules."""
self.normalize_inputs = nn.Identity()
self.normalize_targets = nn.Identity()
if self.config.dataset_stats is not None:
params = _convert_normalization_params_to_tensor(self.config.dataset_stats)
self.normalize_inputs = NormalizeBuffer(
self.config.input_features, self.config.normalization_mapping, params
)
stats = dataset_stats or params
self.normalize_targets = NormalizeBuffer(
self.config.output_features, self.config.normalization_mapping, stats
)
def _init_encoders(self):
"""Initialize shared or separate encoders for actor and critic."""
self.shared_encoder = self.config.shared_encoder
self.encoder_critic = SACObservationEncoder(self.config, self.normalize_inputs)
self.encoder_critic = SACObservationEncoder(self.config)
self.encoder_actor = (
self.encoder_critic
if self.shared_encoder
else SACObservationEncoder(self.config, self.normalize_inputs)
self.encoder_critic if self.shared_encoder else SACObservationEncoder(self.config)
)
def _init_critics(self, continuous_action_dim):
@@ -424,9 +404,7 @@ class SACPolicy(
)
for _ in range(self.config.num_critics)
]
self.critic_ensemble = CriticEnsemble(
encoder=self.encoder_critic, ensemble=heads, output_normalization=self.normalize_targets
)
self.critic_ensemble = CriticEnsemble(encoder=self.encoder_critic, ensemble=heads)
target_heads = [
CriticHead(
input_dim=self.encoder_critic.output_dim + continuous_action_dim,
@@ -434,9 +412,7 @@ class SACPolicy(
)
for _ in range(self.config.num_critics)
]
self.critic_target = CriticEnsemble(
encoder=self.encoder_critic, ensemble=target_heads, output_normalization=self.normalize_targets
)
self.critic_target = CriticEnsemble(encoder=self.encoder_critic, ensemble=target_heads)
self.critic_target.load_state_dict(self.critic_ensemble.state_dict())
if self.config.use_torch_compile:
@@ -490,10 +466,9 @@ class SACPolicy(
class SACObservationEncoder(nn.Module):
"""Encode image and/or state vector observations."""
def __init__(self, config: SACConfig, input_normalizer: nn.Module) -> None:
def __init__(self, config: SACConfig) -> None:
super().__init__()
self.config = config
self.input_normalization = input_normalizer
self._init_image_layers()
self._init_state_layers()
self._compute_output_dim()
@@ -568,11 +543,10 @@ class SACObservationEncoder(nn.Module):
def forward(
self, obs: dict[str, Tensor], cache: dict[str, Tensor] | None = None, detach: bool = False
) -> Tensor:
obs = self.input_normalization(obs)
parts = []
if self.has_images:
if cache is None:
cache = self.get_cached_image_features(obs, normalize=False)
cache = self.get_cached_image_features(obs)
parts.append(self._encode_images(cache, detach))
if self.has_env:
parts.append(self.env_encoder(obs["observation.environment_state"]))
@@ -585,7 +559,7 @@ class SACObservationEncoder(nn.Module):
"No parts to concatenate, you should have at least one image or environment state or state"
)
def get_cached_image_features(self, obs: dict[str, Tensor], normalize: bool = False) -> dict[str, Tensor]:
def get_cached_image_features(self, obs: dict[str, Tensor]) -> dict[str, Tensor]:
"""Extract and optionally cache image features from observations.
This function processes image observations through the vision encoder once and returns
@@ -597,26 +571,17 @@ class SACObservationEncoder(nn.Module):
- The vision encoder forward pass is typically the main computational bottleneck during training and inference
- Caching these features can provide 2-4x speedup in training and inference
Normalization behavior:
- When called from inside forward(): set normalize=False since inputs are already normalized
- When called from outside forward(): set normalize=True to ensure proper input normalization
Usage patterns:
- Called in select_action() with normalize=True
- Called in select_action()
- Called in learner.py's get_observation_features() to pre-compute features for all policy components
- Called internally by forward() with normalize=False
- Called internally by forward()
Args:
obs: Dictionary of observation tensors containing image keys
normalize: Whether to normalize observations before encoding
Set to True when calling directly from outside the encoder's forward method
Set to False when calling from within forward() where inputs are already normalized
Returns:
Dictionary mapping image keys to their corresponding encoded features
"""
if normalize:
obs = self.input_normalization(obs)
batched = torch.cat([obs[k] for k in self.image_keys], dim=0)
out = self.image_encoder(batched)
chunks = torch.chunk(out, len(self.image_keys), dim=0)
@@ -747,7 +712,6 @@ class CriticEnsemble(nn.Module):
Args:
encoder (SACObservationEncoder): encoder for observations.
ensemble (List[CriticHead]): list of critic heads.
output_normalization (nn.Module): normalization layer for actions.
init_final (float | None): optional initializer scale for final layers.
Forward returns a tensor of shape (num_critics, batch_size) containing Q-values.
@@ -757,13 +721,11 @@ class CriticEnsemble(nn.Module):
self,
encoder: SACObservationEncoder,
ensemble: list[CriticHead],
output_normalization: nn.Module,
init_final: float | None = None,
):
super().__init__()
self.encoder = encoder
self.init_final = init_final
self.output_normalization = output_normalization
self.critics = nn.ModuleList(ensemble)
def forward(
@@ -775,11 +737,6 @@ class CriticEnsemble(nn.Module):
device = get_device_from_parameters(self)
# Move each tensor in observations to device
observations = {k: v.to(device) for k, v in observations.items()}
# NOTE: We normalize actions it helps for sample efficiency
actions: dict[str, torch.tensor] = {"action": actions}
# NOTE: Normalization layer took dict in input and outputs a dict that why
actions = self.output_normalization(actions)["action"]
actions = actions.to(device)
obs_enc = self.encoder(observations, cache=observation_features)

View File

@@ -0,0 +1,92 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.sac.configuration_sac import SACConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_sac_pre_post_processors(
config: SACConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the SAC policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the SAC policy.
dataset_stats: A dictionary of statistics for normalization.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
# Add remaining processors
input_steps = [
RenameObservationsProcessorStep(rename_map={}),
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -20,7 +20,6 @@ import torch
from torch import Tensor, nn
from lerobot.constants import OBS_IMAGE, REWARD
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.sac.reward_model.configuration_classifier import RewardClassifierConfig
@@ -108,22 +107,12 @@ class Classifier(PreTrainedPolicy):
def __init__(
self,
config: RewardClassifierConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
from transformers import AutoModel
super().__init__(config)
self.config = config
# Initialize normalization (standardized with the policy framework)
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
# Set up encoder
encoder = AutoModel.from_pretrained(self.config.model_name, trust_remote_code=True)
# Extract vision model if we're given a multimodal model
@@ -247,10 +236,6 @@ class Classifier(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, dict[str, Tensor]]:
"""Standard forward pass for training compatible with train.py."""
# Normalize inputs if needed
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
# Extract images and labels
images, labels = self.extract_images_and_labels(batch)

View File

@@ -0,0 +1,82 @@
# !/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.policies.sac.reward_model.configuration_classifier import RewardClassifierConfig
from lerobot.processor import (
DeviceProcessorStep,
IdentityProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_classifier_processor(
config: RewardClassifierConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the reward classifier.
The pre-processing pipeline prepares input data for the classifier by:
1. Normalizing both input and output features based on dataset statistics.
2. Moving the data to the specified device.
The post-processing pipeline handles the classifier's output by:
1. Moving the data to the CPU.
2. Applying an identity step, as no unnormalization is needed for the output logits.
Args:
config: The configuration object for the RewardClassifier.
dataset_stats: A dictionary of statistics for normalization.
preprocessor_kwargs: Additional arguments for the pre-processor pipeline.
postprocessor_kwargs: Additional arguments for the post-processor pipeline.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
NormalizerProcessorStep(
features=config.input_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
NormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device=config.device),
]
output_steps = [DeviceProcessorStep(device="cpu"), IdentityProcessorStep()]
return (
PolicyProcessorPipeline(
steps=input_steps,
name="classifier_preprocessor",
),
PolicyProcessorPipeline(
steps=output_steps,
name="classifier_postprocessor",
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -53,21 +53,13 @@ policy = SmolVLAPolicy.from_pretrained("lerobot/smolvla_base")
"""
import math
import os
import re
from collections import deque
import safetensors
import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoProcessor
from lerobot.constants import ACTION, OBS_STATE
from lerobot.policies.normalize import (
Normalize,
Unnormalize,
)
from lerobot.constants import ACTION, OBS_LANGUAGE_ATTENTION_MASK, OBS_LANGUAGE_TOKENS, OBS_STATE
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.smolvla.configuration_smolvla import SmolVLAConfig
from lerobot.policies.smolvla.smolvlm_with_expert import SmolVLMWithExpertModel
@@ -76,102 +68,6 @@ from lerobot.policies.utils import (
)
from lerobot.utils.utils import get_safe_dtype
# Matches ".soNNN", optionally followed by "-something", up to the "_buffer_" marker
_VARIANT_RE = re.compile(r"\.so\d+(?:-[\w]+)?_buffer_")
def canonicalise(k: str) -> str:
"""
Remove dataset-variant markers like '.so100-blue_' or '.so100_' from a
normalisation-buffer key.
"""
return _VARIANT_RE.sub(".buffer_", k)
def standardise_state_dict(
checkpoint: dict[str, torch.Tensor], ref_keys: set[str], *, verbose: bool = True
) -> tuple[dict[str, torch.Tensor], list[str]]:
"""
• Re-keys `checkpoint ` so that every entry matches the *reference* key set.
• If several variant keys collapse to the same canonical name we keep the
first one and log the collision.
• Returns the new dict + a list of entries that could not be matched.
"""
out, collisions, unmatched = {}, {}, []
for k, v in checkpoint.items():
canon = canonicalise(k)
if canon in ref_keys:
if canon in out: # duplicate after collapsing
collisions.setdefault(canon, []).append(k)
else:
out[canon] = v
else:
unmatched.append(k)
if verbose:
for canon, variants in collisions.items():
print(f"[standardise_state_dict] '{canon}'{variants}")
if unmatched:
print(f"[standardise_state_dict] kept {len(unmatched)} unmatched keys")
out.update({k: checkpoint[k] for k in unmatched})
return out, unmatched
def rename_checkpoint_keys(checkpoint: dict, rename_str: str):
"""
Renames keys in a checkpoint dictionary based on the given rename string.
Args:
checkpoint (dict): The checkpoint dictionary.
rename_str (str): A string specifying key mappings in the format "old1//new1,old2//new2".
Returns:
dict: The modified checkpoint with renamed keys.
"""
rename_dict = dict(pair.split("//") for pair in rename_str.split(","))
new_checkpoint = {}
for k, v in checkpoint.items():
for old_key, new_key in rename_dict.items():
if old_key in k:
k = k.replace(old_key, new_key)
new_checkpoint[k] = v
return new_checkpoint
def load_smolvla(
model: torch.nn.Module,
filename: str | os.PathLike,
*,
device: str = "cpu",
checkpoint_keys_mapping: str = "",
) -> torch.nn.Module:
state_dict = safetensors.torch.load_file(filename, device=device)
# Optional user-supplied renames (e.g. "model._orig_mod.//model.")
if checkpoint_keys_mapping and "//" in checkpoint_keys_mapping:
state_dict = rename_checkpoint_keys(state_dict, checkpoint_keys_mapping)
state_dict, _ = standardise_state_dict(state_dict, set(model.state_dict().keys()))
# HACK(aliberts): to not overwrite normalization parameters as they should come from the dataset
norm_keys = ("normalize_inputs", "normalize_targets", "unnormalize_outputs")
state_dict = {k: v for k, v in state_dict.items() if not k.startswith(norm_keys)}
missing, unexpected = model.load_state_dict(state_dict, strict=False)
if not all(key.startswith(norm_keys) for key in missing) or unexpected:
raise RuntimeError(
"SmolVLA %d missing / %d unexpected keys",
len(missing),
len(unexpected),
)
return model
def create_sinusoidal_pos_embedding(
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
@@ -326,28 +222,17 @@ class SmolVLAPolicy(PreTrainedPolicy):
def __init__(
self,
config: SmolVLAConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained(self.config.vlm_model_name).tokenizer
self.model = VLAFlowMatching(config)
self.reset()
@@ -357,23 +242,6 @@ class SmolVLAPolicy(PreTrainedPolicy):
ACTION: deque(maxlen=self.config.n_action_steps),
}
# HACK(aliberts, danaaubakirova): we overwrite this classmethod here to fix smolVLA-specific issues
@classmethod
def _load_as_safetensor(
cls,
model: "SmolVLAPolicy",
model_file: str,
map_location: str,
strict: bool,
):
safetensors.torch.load_model(model, model_file, strict=strict, device=map_location)
return load_smolvla(
model,
model_file,
device=map_location,
checkpoint_keys_mapping="model._orig_mod.//model.",
)
def get_optim_params(self) -> dict:
return self.parameters()
@@ -389,7 +257,8 @@ class SmolVLAPolicy(PreTrainedPolicy):
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
lang_tokens = batch[f"{OBS_LANGUAGE_TOKENS}"]
lang_masks = batch[f"{OBS_LANGUAGE_ATTENTION_MASK}"]
actions = self.model.sample_actions(images, img_masks, lang_tokens, lang_masks, state, noise=noise)
@@ -397,8 +266,6 @@ class SmolVLAPolicy(PreTrainedPolicy):
original_action_dim = self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({ACTION: actions})[ACTION]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
@@ -408,8 +275,6 @@ class SmolVLAPolicy(PreTrainedPolicy):
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
return batch
@torch.no_grad()
@@ -450,11 +315,11 @@ class SmolVLAPolicy(PreTrainedPolicy):
if self.config.adapt_to_pi_aloha:
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
lang_tokens = batch[f"{OBS_LANGUAGE_TOKENS}"]
lang_masks = batch[f"{OBS_LANGUAGE_ATTENTION_MASK}"]
actions = self.prepare_action(batch)
actions_is_pad = batch.get("actions_id_pad")
loss_dict = {}
@@ -518,30 +383,6 @@ class SmolVLAPolicy(PreTrainedPolicy):
img_masks.append(mask)
return images, img_masks
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_STATE].device
tasks = batch["task"]
if isinstance(tasks, str):
tasks = [tasks]
if len(tasks) == 1:
tasks = [tasks[0] for _ in range(batch[OBS_STATE].shape[0])]
tasks = [task if task.endswith("\n") else f"{task}\n" for task in tasks]
tokenized_prompt = self.language_tokenizer.__call__(
tasks,
padding=self.config.pad_language_to,
padding_side="right",
max_length=self.config.tokenizer_max_length,
return_tensors="pt",
)
lang_tokens = tokenized_prompt["input_ids"].to(device=device)
lang_masks = tokenized_prompt["attention_mask"].to(device=device, dtype=torch.bool)
return lang_tokens, lang_masks
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:

View File

@@ -0,0 +1,141 @@
#!/usr/bin/env python
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.smolvla.configuration_smolvla import SmolVLAConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
ComplementaryDataProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
ProcessorStepRegistry,
RenameObservationsProcessorStep,
TokenizerProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_smolvla_pre_post_processors(
config: SmolVLAConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the SmolVLA policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Ensuring the language task description ends with a newline character.
5. Tokenizing the language task description.
6. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output actions to their original scale.
Args:
config: The configuration object for the SmolVLA policy.
dataset_stats: A dictionary of statistics for normalization.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}), # To mimic the same processor as pretrained one
AddBatchDimensionProcessorStep(),
SmolVLANewLineProcessor(),
TokenizerProcessorStep(
tokenizer_name=config.vlm_model_name,
padding=config.pad_language_to,
padding_side="right",
max_length=config.tokenizer_max_length,
),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)
@ProcessorStepRegistry.register(name="smolvla_new_line_processor")
class SmolVLANewLineProcessor(ComplementaryDataProcessorStep):
"""
A processor step that ensures the 'task' description ends with a newline character.
This step is necessary for certain tokenizers (e.g., PaliGemma) that expect a
newline at the end of the prompt. It handles both single string tasks and lists
of string tasks.
"""
def complementary_data(self, complementary_data):
if "task" not in complementary_data:
return complementary_data
task = complementary_data["task"]
if task is None:
return complementary_data
new_complementary_data = dict(complementary_data)
# Handle both string and list of strings
if isinstance(task, str):
# Single string: add newline if not present
if not task.endswith("\n"):
new_complementary_data["task"] = f"{task}\n"
elif isinstance(task, list) and all(isinstance(t, str) for t in task):
# List of strings: add newline to each if not present
new_complementary_data["task"] = [t if t.endswith("\n") else f"{t}\n" for t in task]
# If task is neither string nor list of strings, leave unchanged
return new_complementary_data
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features

View File

@@ -36,7 +36,6 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor
from lerobot.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_STATE, REWARD
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
@@ -63,26 +62,19 @@ class TDMPCPolicy(PreTrainedPolicy):
config_class = TDMPCConfig
name = "tdmpc"
def __init__(self, config: TDMPCConfig, dataset_stats: dict[str, dict[str, Tensor]] | None = None):
def __init__(
self,
config: TDMPCConfig,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.model = TDMPCTOLD(config)
self.model_target = deepcopy(self.model)
for param in self.model_target.parameters():
@@ -137,7 +129,6 @@ class TDMPCPolicy(PreTrainedPolicy):
actions = torch.clamp(actions, -1, +1)
actions = self.unnormalize_outputs({ACTION: actions})[ACTION]
return actions
@torch.no_grad()
@@ -147,11 +138,12 @@ class TDMPCPolicy(PreTrainedPolicy):
if ACTION in batch:
batch.pop(ACTION)
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGE] = batch[next(iter(self.config.image_features))]
# NOTE: for offline evaluation, we have action in the batch, so we need to pop it out
if ACTION in batch:
batch.pop(ACTION)
self._queues = populate_queues(self._queues, batch)
@@ -320,11 +312,9 @@ class TDMPCPolicy(PreTrainedPolicy):
"""
device = get_device_from_parameters(self)
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGE] = batch[next(iter(self.config.image_features))]
batch = self.normalize_targets(batch)
info = {}

View File

@@ -0,0 +1,90 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_tdmpc_pre_post_processors(
config: TDMPCConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the TDMPC policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the TDMPC policy.
dataset_stats: A dictionary of statistics for normalization.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}),
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -28,7 +28,6 @@ import torchvision
from torch import Tensor, nn
from lerobot.constants import ACTION, OBS_IMAGES, OBS_STATE
from lerobot.policies.normalize import Normalize, Unnormalize
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
from lerobot.policies.vqbet.configuration_vqbet import VQBeTConfig
@@ -48,7 +47,6 @@ class VQBeTPolicy(PreTrainedPolicy):
def __init__(
self,
config: VQBeTConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
@@ -61,14 +59,6 @@ class VQBeTPolicy(PreTrainedPolicy):
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.vqbet = VQBeTModel(config)
self.reset()
@@ -128,7 +118,6 @@ class VQBeTPolicy(PreTrainedPolicy):
def predict_action_chunk(self, batch: dict[str, Tensor]) -> Tensor:
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
actions = self.unnormalize_outputs({ACTION: actions})[ACTION]
return actions
@torch.no_grad()
@@ -142,10 +131,12 @@ class VQBeTPolicy(PreTrainedPolicy):
# NOTE: for offline evaluation, we have action in the batch, so we need to pop it out
if ACTION in batch:
batch.pop(ACTION)
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
# NOTE: It's important that this happens after stacking the images into a single key.
batch["observation.images"] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
# NOTE: for offline evaluation, we have action in the batch, so we need to pop it out
if ACTION in batch:
batch.pop(ACTION)
self._queues = populate_queues(self._queues, batch)
@@ -165,10 +156,8 @@ class VQBeTPolicy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, dict]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch[OBS_IMAGES] = torch.stack([batch[key] for key in self.config.image_features], dim=-4)
batch = self.normalize_targets(batch)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://huggingface.co/papers/2403.03181)
if not self.vqbet.action_head.vqvae_model.discretized.item():
# loss: total loss of training RVQ

View File

@@ -0,0 +1,91 @@
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from lerobot.constants import POLICY_POSTPROCESSOR_DEFAULT_NAME, POLICY_PREPROCESSOR_DEFAULT_NAME
from lerobot.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.processor import (
AddBatchDimensionProcessorStep,
DeviceProcessorStep,
NormalizerProcessorStep,
PolicyAction,
PolicyProcessorPipeline,
RenameObservationsProcessorStep,
UnnormalizerProcessorStep,
)
from lerobot.processor.converters import policy_action_to_transition, transition_to_policy_action
def make_vqbet_pre_post_processors(
config: VQBeTConfig,
dataset_stats: dict[str, dict[str, torch.Tensor]] | None = None,
) -> tuple[
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
PolicyProcessorPipeline[PolicyAction, PolicyAction],
]:
"""
Constructs pre-processor and post-processor pipelines for the VQ-BeT policy.
The pre-processing pipeline prepares input data for the model by:
1. Renaming features, allowing customization to match pretrained configurations.
2. Normalizing input and output features based on dataset statistics.
3. Adding a batch dimension.
4. Moving all data to the specified device.
The post-processing pipeline handles the model's output by:
1. Moving data to the CPU.
2. Unnormalizing the output features to their original scale.
Args:
config: The configuration object for the VQ-BeT policy.
dataset_stats: A dictionary of statistics for normalization.
Returns:
A tuple containing the configured pre-processor and post-processor pipelines.
"""
input_steps = [
RenameObservationsProcessorStep(rename_map={}), # Let the possibility to the user to rename the keys
AddBatchDimensionProcessorStep(),
DeviceProcessorStep(device=config.device),
NormalizerProcessorStep(
features={**config.input_features, **config.output_features},
norm_map=config.normalization_mapping,
stats=dataset_stats,
),
]
output_steps = [
UnnormalizerProcessorStep(
features=config.output_features, norm_map=config.normalization_mapping, stats=dataset_stats
),
DeviceProcessorStep(device="cpu"),
]
return (
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]](
steps=input_steps,
name=POLICY_PREPROCESSOR_DEFAULT_NAME,
),
PolicyProcessorPipeline[PolicyAction, PolicyAction](
steps=output_steps,
name=POLICY_POSTPROCESSOR_DEFAULT_NAME,
to_transition=policy_action_to_transition,
to_output=transition_to_policy_action,
),
)

View File

@@ -14,41 +14,120 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .device_processor import DeviceProcessor
from .normalize_processor import NormalizerProcessor, UnnormalizerProcessor
from .observation_processor import VanillaObservationProcessor
from .pipeline import (
ActionProcessor,
DoneProcessor,
from .batch_processor import AddBatchDimensionProcessorStep
from .converters import (
batch_to_transition,
create_transition,
transition_to_batch,
)
from .core import (
EnvAction,
EnvTransition,
IdentityProcessor,
InfoProcessor,
ObservationProcessor,
PolicyAction,
RobotAction,
RobotObservation,
TransitionKey,
)
from .delta_action_processor import MapDeltaActionToRobotActionStep, MapTensorToDeltaActionDictStep
from .device_processor import DeviceProcessorStep
from .factory import (
make_default_processors,
make_default_robot_action_processor,
make_default_robot_observation_processor,
make_default_teleop_action_processor,
)
from .gym_action_processor import (
Numpy2TorchActionProcessorStep,
Torch2NumpyActionProcessorStep,
)
from .hil_processor import (
AddTeleopActionAsComplimentaryDataStep,
AddTeleopEventsAsInfoStep,
GripperPenaltyProcessorStep,
ImageCropResizeProcessorStep,
InterventionActionProcessorStep,
RewardClassifierProcessorStep,
TimeLimitProcessorStep,
)
from .joint_observations_processor import JointVelocityProcessorStep, MotorCurrentProcessorStep
from .normalize_processor import NormalizerProcessorStep, UnnormalizerProcessorStep, hotswap_stats
from .observation_processor import VanillaObservationProcessorStep
from .pipeline import (
ActionProcessorStep,
ComplementaryDataProcessorStep,
DataProcessorPipeline,
DoneProcessorStep,
IdentityProcessorStep,
InfoProcessorStep,
ObservationProcessorStep,
PolicyActionProcessorStep,
PolicyProcessorPipeline,
ProcessorKwargs,
ProcessorStep,
ProcessorStepRegistry,
RewardProcessor,
RobotProcessor,
TransitionKey,
TruncatedProcessor,
RewardProcessorStep,
RobotActionProcessorStep,
RobotProcessorPipeline,
TruncatedProcessorStep,
)
from .rename_processor import RenameProcessor
from .policy_robot_bridge import (
PolicyActionToRobotActionProcessorStep,
RobotActionToPolicyActionProcessorStep,
)
from .rename_processor import RenameObservationsProcessorStep
from .tokenizer_processor import TokenizerProcessorStep
__all__ = [
"ActionProcessor",
"DeviceProcessor",
"DoneProcessor",
"ActionProcessorStep",
"AddTeleopActionAsComplimentaryDataStep",
"AddTeleopEventsAsInfoStep",
"ComplementaryDataProcessorStep",
"batch_to_transition",
"create_transition",
"DeviceProcessorStep",
"DoneProcessorStep",
"EnvAction",
"EnvTransition",
"IdentityProcessor",
"InfoProcessor",
"NormalizerProcessor",
"UnnormalizerProcessor",
"ObservationProcessor",
"GripperPenaltyProcessorStep",
"hotswap_stats",
"IdentityProcessorStep",
"ImageCropResizeProcessorStep",
"InfoProcessorStep",
"InterventionActionProcessorStep",
"JointVelocityProcessorStep",
"make_default_processors",
"make_default_teleop_action_processor",
"make_default_robot_action_processor",
"make_default_robot_observation_processor",
"MapDeltaActionToRobotActionStep",
"MapTensorToDeltaActionDictStep",
"MotorCurrentProcessorStep",
"NormalizerProcessorStep",
"Numpy2TorchActionProcessorStep",
"ObservationProcessorStep",
"PolicyAction",
"PolicyActionProcessorStep",
"PolicyProcessorPipeline",
"ProcessorKwargs",
"ProcessorStep",
"ProcessorStepRegistry",
"RenameProcessor",
"RewardProcessor",
"RobotProcessor",
"RobotAction",
"RobotActionProcessorStep",
"RobotObservation",
"RenameObservationsProcessorStep",
"RewardClassifierProcessorStep",
"RewardProcessorStep",
"DataProcessorPipeline",
"TimeLimitProcessorStep",
"AddBatchDimensionProcessorStep",
"RobotProcessorPipeline",
"TokenizerProcessorStep",
"Torch2NumpyActionProcessorStep",
"RobotActionToPolicyActionProcessorStep",
"PolicyActionToRobotActionProcessorStep",
"transition_to_batch",
"TransitionKey",
"TruncatedProcessor",
"VanillaObservationProcessor",
"TruncatedProcessorStep",
"UnnormalizerProcessorStep",
"VanillaObservationProcessorStep",
]

View File

@@ -0,0 +1,254 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script defines processor steps for adding a batch dimension to various components of an environment transition.
These steps are designed to process actions, observations, and complementary data, making them suitable for batch processing by adding a leading dimension. This is a common requirement before feeding data into a neural network model.
"""
from dataclasses import dataclass, field
from torch import Tensor
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from .core import EnvTransition, PolicyAction
from .pipeline import (
ComplementaryDataProcessorStep,
ObservationProcessorStep,
PolicyActionProcessorStep,
ProcessorStep,
ProcessorStepRegistry,
TransitionKey,
)
@dataclass
@ProcessorStepRegistry.register(name="to_batch_processor_action")
class AddBatchDimensionActionStep(PolicyActionProcessorStep):
"""
Processor step to add a batch dimension to a 1D tensor action.
This is useful for creating a batch of size 1 from a single action sample.
"""
def action(self, action: PolicyAction) -> PolicyAction:
"""
Adds a batch dimension to the action if it's a 1D tensor.
Args:
action: The action tensor.
Returns:
The action tensor with an added batch dimension.
"""
if action.dim() != 1:
return action
return action.unsqueeze(0)
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Returns the input features unchanged.
Adding a batch dimension does not alter the feature definition.
Args:
features: A dictionary of policy features.
Returns:
The original dictionary of policy features.
"""
return features
@dataclass
@ProcessorStepRegistry.register(name="to_batch_processor_observation")
class AddBatchDimensionObservationStep(ObservationProcessorStep):
"""
Processor step to add a batch dimension to observations.
It handles different types of observations:
- State vectors (1D tensors).
- Single images (3D tensors).
- Dictionaries of multiple images (3D tensors).
"""
def observation(self, observation: dict[str, Tensor]) -> dict[str, Tensor]:
"""
Adds a batch dimension to tensor-based observations in the observation dictionary.
Args:
observation: The observation dictionary.
Returns:
The observation dictionary with batch dimensions added to tensors.
"""
# Process state observations - add batch dim if 1D
for state_key in [OBS_STATE, OBS_ENV_STATE]:
if state_key in observation:
state_value = observation[state_key]
if isinstance(state_value, Tensor) and state_value.dim() == 1:
observation[state_key] = state_value.unsqueeze(0)
# Process single image observation - add batch dim if 3D
if OBS_IMAGE in observation:
image_value = observation[OBS_IMAGE]
if isinstance(image_value, Tensor) and image_value.dim() == 3:
observation[OBS_IMAGE] = image_value.unsqueeze(0)
# Process multiple image observations - add batch dim if 3D
for key, value in observation.items():
if key.startswith(f"{OBS_IMAGES}.") and isinstance(value, Tensor) and value.dim() == 3:
observation[key] = value.unsqueeze(0)
return observation
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Returns the input features unchanged.
Adding a batch dimension does not alter the feature definition.
Args:
features: A dictionary of policy features.
Returns:
The original dictionary of policy features.
"""
return features
@dataclass
@ProcessorStepRegistry.register(name="to_batch_processor_complementary_data")
class AddBatchDimensionComplementaryDataStep(ComplementaryDataProcessorStep):
"""
Processor step to add a batch dimension to complementary data fields.
Handles specific keys like 'task', 'index', and 'task_index' to make them batched.
- 'task' (str) is wrapped in a list.
- 'index' and 'task_index' (0D tensors) get a batch dimension.
"""
def complementary_data(self, complementary_data: dict) -> dict:
"""
Adds a batch dimension to specific fields in the complementary data dictionary.
Args:
complementary_data: The complementary data dictionary.
Returns:
The complementary data dictionary with batch dimensions added.
"""
# Process task field - wrap string in list to add batch dimension
if "task" in complementary_data:
task_value = complementary_data["task"]
if isinstance(task_value, str):
complementary_data["task"] = [task_value]
# Process index field - add batch dim if 0D
if "index" in complementary_data:
index_value = complementary_data["index"]
if isinstance(index_value, Tensor) and index_value.dim() == 0:
complementary_data["index"] = index_value.unsqueeze(0)
# Process task_index field - add batch dim if 0D
if "task_index" in complementary_data:
task_index_value = complementary_data["task_index"]
if isinstance(task_index_value, Tensor) and task_index_value.dim() == 0:
complementary_data["task_index"] = task_index_value.unsqueeze(0)
return complementary_data
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Returns the input features unchanged.
Adding a batch dimension does not alter the feature definition.
Args:
features: A dictionary of policy features.
Returns:
The original dictionary of policy features.
"""
return features
@dataclass
@ProcessorStepRegistry.register(name="to_batch_processor")
class AddBatchDimensionProcessorStep(ProcessorStep):
"""
A composite processor step that adds a batch dimension to the entire environment transition.
This step combines individual processors for actions, observations, and complementary data
to create a batched transition (batch size 1) from a single-instance transition.
Attributes:
to_batch_action_processor: Processor for the action component.
to_batch_observation_processor: Processor for the observation component.
to_batch_complementary_data_processor: Processor for the complementary data component.
"""
to_batch_action_processor: AddBatchDimensionActionStep = field(
default_factory=AddBatchDimensionActionStep
)
to_batch_observation_processor: AddBatchDimensionObservationStep = field(
default_factory=AddBatchDimensionObservationStep
)
to_batch_complementary_data_processor: AddBatchDimensionComplementaryDataStep = field(
default_factory=AddBatchDimensionComplementaryDataStep
)
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""
Applies the batching process to all relevant parts of an environment transition.
Args:
transition: The environment transition to process.
Returns:
The environment transition with a batch dimension added.
"""
if transition[TransitionKey.ACTION] is not None:
transition = self.to_batch_action_processor(transition)
if transition[TransitionKey.OBSERVATION] is not None:
transition = self.to_batch_observation_processor(transition)
if transition[TransitionKey.COMPLEMENTARY_DATA] is not None:
transition = self.to_batch_complementary_data_processor(transition)
return transition
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Returns the input features unchanged.
Adding a batch dimension does not alter the feature definition.
Args:
features: A dictionary of policy features.
Returns:
The original dictionary of policy features.
"""
# NOTE: We ignore the batch dimension when transforming features
return features

View File

@@ -0,0 +1,412 @@
# !/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Sequence
from functools import singledispatch
from typing import Any
import numpy as np
import torch
from .core import EnvTransition, PolicyAction, RobotAction, RobotObservation, TransitionKey
@singledispatch
def to_tensor(
value: Any,
*,
dtype: torch.dtype | None = torch.float32,
device: torch.device | str | None = None,
) -> torch.Tensor:
"""
Convert various data types to PyTorch tensors with configurable options.
This is a unified tensor conversion function using single dispatch to handle
different input types appropriately.
Args:
value: Input value to convert (tensor, array, scalar, sequence, etc.).
dtype: Target tensor dtype. If None, preserves original dtype.
device: Target device for the tensor.
Returns:
A PyTorch tensor.
Raises:
TypeError: If the input type is not supported.
"""
raise TypeError(f"Unsupported type for tensor conversion: {type(value)}")
@to_tensor.register(torch.Tensor)
def _(value: torch.Tensor, *, dtype=torch.float32, device=None, **kwargs) -> torch.Tensor:
"""Handle conversion for existing PyTorch tensors."""
if dtype is not None:
value = value.to(dtype=dtype)
if device is not None:
value = value.to(device=device)
return value
@to_tensor.register(np.ndarray)
def _(
value: np.ndarray,
*,
dtype=torch.float32,
device=None,
**kwargs,
) -> torch.Tensor:
"""Handle conversion for numpy arrays."""
# Check for numpy scalars (0-dimensional arrays) and treat them as scalars.
if value.ndim == 0:
# Numpy scalars should be converted to 0-dimensional tensors.
scalar_value = value.item()
return torch.tensor(scalar_value, dtype=dtype, device=device)
# Create tensor from numpy array.
tensor = torch.from_numpy(value)
# Apply dtype and device conversion if specified.
if dtype is not None:
tensor = tensor.to(dtype=dtype)
if device is not None:
tensor = tensor.to(device=device)
return tensor
@to_tensor.register(int)
@to_tensor.register(float)
@to_tensor.register(np.integer)
@to_tensor.register(np.floating)
def _(value, *, dtype=torch.float32, device=None, **kwargs) -> torch.Tensor:
"""Handle conversion for scalar values including numpy scalars."""
return torch.tensor(value, dtype=dtype, device=device)
@to_tensor.register(list)
@to_tensor.register(tuple)
def _(value: Sequence, *, dtype=torch.float32, device=None, **kwargs) -> torch.Tensor:
"""Handle conversion for sequences (lists, tuples)."""
return torch.tensor(value, dtype=dtype, device=device)
@to_tensor.register(dict)
def _(value: dict, *, device=None, **kwargs) -> dict:
"""Handle conversion for dictionaries by recursively converting their values to tensors."""
if not value:
return {}
result = {}
for key, sub_value in value.items():
if sub_value is None:
continue
if isinstance(sub_value, dict):
# Recursively process nested dictionaries.
result[key] = to_tensor(
sub_value,
device=device,
**kwargs,
)
continue
# Convert individual values to tensors.
result[key] = to_tensor(
sub_value,
device=device,
**kwargs,
)
return result
def from_tensor_to_numpy(x: torch.Tensor | Any) -> np.ndarray | float | int | Any:
"""
Convert a PyTorch tensor to a numpy array or scalar if applicable.
If the input is not a tensor, it is returned unchanged.
Args:
x: The input, which can be a tensor or any other type.
Returns:
A numpy array, a scalar, or the original input.
"""
if isinstance(x, torch.Tensor):
return x.item() if x.numel() == 1 else x.detach().cpu().numpy()
return x
def _extract_complementary_data(batch: dict[str, Any]) -> dict[str, Any]:
"""
Extract complementary data from a batch dictionary.
This includes padding flags, task description, and indices.
Args:
batch: The batch dictionary.
Returns:
A dictionary with the extracted complementary data.
"""
pad_keys = {k: v for k, v in batch.items() if "_is_pad" in k}
task_key = {"task": batch["task"]} if "task" in batch else {}
index_key = {"index": batch["index"]} if "index" in batch else {}
task_index_key = {"task_index": batch["task_index"]} if "task_index" in batch else {}
return {**pad_keys, **task_key, **index_key, **task_index_key}
def create_transition(
observation: dict[str, Any] | None = None,
action: PolicyAction | RobotAction | None = None,
reward: float = 0.0,
done: bool = False,
truncated: bool = False,
info: dict[str, Any] | None = None,
complementary_data: dict[str, Any] | None = None,
) -> EnvTransition:
"""
Create an `EnvTransition` dictionary with sensible defaults.
Args:
observation: Observation dictionary.
action: Action dictionary.
reward: Scalar reward value.
done: Episode termination flag.
truncated: Episode truncation flag.
info: Additional info dictionary.
complementary_data: Complementary data dictionary.
Returns:
A complete `EnvTransition` dictionary.
"""
return {
TransitionKey.OBSERVATION: observation,
TransitionKey.ACTION: action,
TransitionKey.REWARD: reward,
TransitionKey.DONE: done,
TransitionKey.TRUNCATED: truncated,
TransitionKey.INFO: info if info is not None else {},
TransitionKey.COMPLEMENTARY_DATA: complementary_data if complementary_data is not None else {},
}
def robot_action_observation_to_transition(
action_observation: tuple[RobotAction, RobotObservation],
) -> EnvTransition:
"""
Convert a raw robot action and observation dictionary into a standardized `EnvTransition`.
Args:
action: The raw action dictionary from a teleoperation device or controller.
observation: The raw observation dictionary from the environment.
Returns:
An `EnvTransition` containing the formatted observation.
"""
if not isinstance(action_observation, tuple):
raise ValueError("action_observation should be a tuple type with an action and observation")
action, observation = action_observation
if action is not None and not isinstance(action, dict):
raise ValueError(f"Action should be a RobotAction type got {type(action)}")
if observation is not None and not isinstance(observation, dict):
raise ValueError(f"Observation should be a RobotObservation type got {type(observation)}")
return create_transition(action=action, observation=observation)
def robot_action_to_transition(action: RobotAction) -> EnvTransition:
"""
Convert a raw robot action dictionary into a standardized `EnvTransition`.
Args:
action: The raw action dictionary from a teleoperation device or controller.
Returns:
An `EnvTransition` containing the formatted action.
"""
if not isinstance(action, dict):
raise ValueError(f"Action should be a RobotAction type got {type(action)}")
return create_transition(action=action)
def observation_to_transition(observation: RobotObservation) -> EnvTransition:
"""
Convert a raw robot observation dictionary into a standardized `EnvTransition`.
Args:
observation: The raw observation dictionary from the environment.
Returns:
An `EnvTransition` containing the formatted observation.
"""
if not isinstance(observation, dict):
raise ValueError(f"Observation should be a RobotObservation type got {type(observation)}")
return create_transition(observation=observation)
def transition_to_robot_action(transition: EnvTransition) -> RobotAction:
"""
Extract a raw robot action dictionary for a robot from an `EnvTransition`.
This function searches for keys in the format "action.*.pos" or "action.*.vel"
and converts them into a flat dictionary suitable for sending to a robot controller.
Args:
transition: The `EnvTransition` containing the action.
Returns:
A dictionary representing the raw robot action.
"""
if not isinstance(transition, dict):
raise ValueError(f"Transition should be a EnvTransition type (dict) got {type(transition)}")
action = transition.get(TransitionKey.ACTION)
if not isinstance(action, dict):
raise ValueError(f"Action should be a RobotAction type (dict) got {type(action)}")
return transition.get(TransitionKey.ACTION)
def transition_to_policy_action(transition: EnvTransition) -> PolicyAction:
"""
Convert an `EnvTransition` to a `PolicyAction`.
"""
if not isinstance(transition, dict):
raise ValueError(f"Transition should be a EnvTransition type (dict) got {type(transition)}")
action = transition.get(TransitionKey.ACTION)
if not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
return action
def transition_to_observation(transition: EnvTransition) -> RobotObservation:
"""
Convert an `EnvTransition` to a `RobotObservation`.
"""
if not isinstance(transition, dict):
raise ValueError(f"Transition should be a EnvTransition type (dict) got {type(transition)}")
observation = transition.get(TransitionKey.OBSERVATION)
if not isinstance(observation, dict):
raise ValueError(f"Observation should be a RobotObservation (dict) type got {type(observation)}")
return observation
def policy_action_to_transition(action: PolicyAction) -> EnvTransition:
"""
Convert a `PolicyAction` to an `EnvTransition`.
"""
if not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
return create_transition(action=action)
def batch_to_transition(batch: dict[str, Any]) -> EnvTransition:
"""
Convert a batch dictionary from a dataset/dataloader into an `EnvTransition`.
This function maps recognized keys from a batch to the `EnvTransition` structure,
filling in missing keys with sensible defaults.
Args:
batch: A batch dictionary.
Returns:
An `EnvTransition` dictionary.
Raises:
ValueError: If the input is not a dictionary.
"""
# Validate input type.
if not isinstance(batch, dict):
raise ValueError(f"EnvTransition must be a dictionary. Got {type(batch).__name__}")
action = batch.get("action")
if action is not None and not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
# Extract observation and complementary data keys.
observation_keys = {k: v for k, v in batch.items() if k.startswith("observation.")}
complementary_data = _extract_complementary_data(batch)
return create_transition(
observation=observation_keys if observation_keys else None,
action=batch.get("action"),
reward=batch.get("next.reward", 0.0),
done=batch.get("next.done", False),
truncated=batch.get("next.truncated", False),
info=batch.get("info", {}),
complementary_data=complementary_data if complementary_data else None,
)
def transition_to_batch(transition: EnvTransition) -> dict[str, Any]:
"""
Convert an `EnvTransition` back to the canonical batch format used in LeRobot.
This is the inverse of `batch_to_transition`.
Args:
transition: The `EnvTransition` to convert.
Returns:
A batch dictionary with canonical LeRobot field names.
"""
if not isinstance(transition, dict):
raise ValueError(f"Transition should be a EnvTransition type (dict) got {type(transition)}")
batch = {
"action": transition.get(TransitionKey.ACTION),
"next.reward": transition.get(TransitionKey.REWARD, 0.0),
"next.done": transition.get(TransitionKey.DONE, False),
"next.truncated": transition.get(TransitionKey.TRUNCATED, False),
"info": transition.get(TransitionKey.INFO, {}),
}
# Add complementary data.
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
if comp_data:
batch.update(comp_data)
# Flatten observation dictionary.
observation = transition.get(TransitionKey.OBSERVATION)
if isinstance(observation, dict):
batch.update(observation)
return batch
def identity_transition(transition: EnvTransition) -> EnvTransition:
"""
An identity function for transitions, returning the input unchanged.
Useful as a default or placeholder in processing pipelines.
Args:
tr: An `EnvTransition`.
Returns:
The same `EnvTransition`.
"""
return transition

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from enum import Enum
from typing import Any, TypeAlias, TypedDict
import numpy as np
import torch
class TransitionKey(str, Enum):
"""Keys for accessing EnvTransition dictionary components."""
# TODO(Steven): Use consts
OBSERVATION = "observation"
ACTION = "action"
REWARD = "reward"
DONE = "done"
TRUNCATED = "truncated"
INFO = "info"
COMPLEMENTARY_DATA = "complementary_data"
PolicyAction: TypeAlias = torch.Tensor
RobotAction: TypeAlias = dict[str, Any]
EnvAction: TypeAlias = np.ndarray
RobotObservation: TypeAlias = dict[str, Any]
EnvTransition = TypedDict(
"EnvTransition",
{
TransitionKey.OBSERVATION.value: dict[str, Any] | None,
TransitionKey.ACTION.value: PolicyAction | RobotAction | EnvAction | None,
TransitionKey.REWARD.value: float | torch.Tensor | None,
TransitionKey.DONE.value: bool | torch.Tensor | None,
TransitionKey.TRUNCATED.value: bool | torch.Tensor | None,
TransitionKey.INFO.value: dict[str, Any] | None,
TransitionKey.COMPLEMENTARY_DATA.value: dict[str, Any] | None,
},
)

View File

@@ -0,0 +1,145 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
from .core import PolicyAction, RobotAction
from .pipeline import ActionProcessorStep, ProcessorStepRegistry, RobotActionProcessorStep
@ProcessorStepRegistry.register("map_tensor_to_delta_action_dict")
@dataclass
class MapTensorToDeltaActionDictStep(ActionProcessorStep):
"""
Maps a flat action tensor from a policy to a structured delta action dictionary.
This step is typically used after a policy outputs a continuous action vector.
It decomposes the vector into named components for delta movements of the
end-effector (x, y, z) and optionally the gripper.
Attributes:
use_gripper: If True, assumes the 4th element of the tensor is the
gripper action.
"""
use_gripper: bool = True
def action(self, action: PolicyAction) -> RobotAction:
if not isinstance(action, PolicyAction):
raise ValueError("Only PolicyAction is supported for this processor")
if action.dim() > 1:
action = action.squeeze(0)
# TODO (maractingi): add rotation
delta_action = {
"delta_x": action[0].item(),
"delta_y": action[1].item(),
"delta_z": action[2].item(),
}
if self.use_gripper:
delta_action["gripper"] = action[3].item()
return delta_action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for axis in ["x", "y", "z"]:
features[PipelineFeatureType.ACTION][f"delta_{axis}"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
if self.use_gripper:
features[PipelineFeatureType.ACTION]["gripper"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features
@ProcessorStepRegistry.register("map_delta_action_to_robot_action")
@dataclass
class MapDeltaActionToRobotActionStep(RobotActionProcessorStep):
"""
Maps delta actions from teleoperators to robot target actions for inverse kinematics.
This step converts a dictionary of delta movements (e.g., from a gamepad)
into a target action format that includes an "enabled" flag and target
end-effector positions. It also handles scaling and noise filtering.
Attributes:
position_scale: A factor to scale the delta position inputs.
rotation_scale: A factor to scale the delta rotation inputs (currently unused).
noise_threshold: The magnitude below which delta inputs are considered noise
and do not trigger an "enabled" state.
"""
# Scale factors for delta movements
position_scale: float = 1.0
rotation_scale: float = 0.0 # No rotation deltas for gamepad/keyboard
noise_threshold: float = 1e-3 # 1 mm threshold to filter out noise
def action(self, action: RobotAction) -> RobotAction:
# NOTE (maractingi): Action can be a dict from the teleop_devices or a tensor from the policy
# TODO (maractingi): changing this target_xyz naming convention from the teleop_devices
delta_x = action.pop("delta_x")
delta_y = action.pop("delta_y")
delta_z = action.pop("delta_z")
gripper = action.pop("gripper")
# Determine if the teleoperator is actively providing input
# Consider enabled if any significant movement delta is detected
position_magnitude = (delta_x**2 + delta_y**2 + delta_z**2) ** 0.5 # Use Euclidean norm for position
enabled = position_magnitude > self.noise_threshold # Small threshold to avoid noise
# Scale the deltas appropriately
scaled_delta_x = delta_x * self.position_scale
scaled_delta_y = delta_y * self.position_scale
scaled_delta_z = delta_z * self.position_scale
# For gamepad/keyboard, we don't have rotation input, so set to 0
# These could be extended in the future for more sophisticated teleoperators
target_wx = 0.0
target_wy = 0.0
target_wz = 0.0
# Update action with robot target format
action = {
"enabled": enabled,
"target_x": scaled_delta_x,
"target_y": scaled_delta_y,
"target_z": scaled_delta_z,
"target_wx": target_wx,
"target_wy": target_wy,
"target_wz": target_wz,
"gripper_vel": float(gripper),
}
return action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for axis in ["x", "y", "z", "gripper"]:
features[PipelineFeatureType.ACTION].pop(f"delta_{axis}", None)
for feat in ["enabled", "target_x", "target_y", "target_z", "target_wx", "target_wy", "target_wz"]:
features[PipelineFeatureType.ACTION][f"{feat}"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features

View File

@@ -13,70 +13,182 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script defines a processor step for moving environment transition data to a specific torch device and casting
its floating-point precision.
"""
from dataclasses import dataclass
from typing import Any
import torch
from lerobot.configs.types import PolicyFeature
from lerobot.processor.pipeline import EnvTransition, TransitionKey
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.utils.utils import get_safe_torch_device
from .core import EnvTransition, PolicyAction, TransitionKey
from .pipeline import ProcessorStep, ProcessorStepRegistry
@ProcessorStepRegistry.register("device_processor")
@dataclass
class DeviceProcessor:
"""Processes transitions by moving tensors to the specified device.
class DeviceProcessorStep(ProcessorStep):
"""
Processor step to move all tensors within an `EnvTransition` to a specified device and optionally cast their
floating-point data type.
This processor ensures that all tensors in the transition are moved to the
specified device (CPU or GPU) before they are returned.
This is crucial for preparing data for model training or inference on hardware like GPUs.
Attributes:
device: The target device for tensors (e.g., "cpu", "cuda", "cuda:0").
float_dtype: The target floating-point dtype as a string (e.g., "float32", "float16", "bfloat16").
If None, the dtype is not changed.
"""
device: torch.device = "cpu"
device: str = "cpu"
float_dtype: str | None = None
DTYPE_MAPPING = {
"float16": torch.float16,
"float32": torch.float32,
"float64": torch.float64,
"bfloat16": torch.bfloat16,
"half": torch.float16,
"float": torch.float32,
"double": torch.float64,
}
def __post_init__(self):
self.device = get_safe_torch_device(self.device)
"""
Initializes the processor by converting string configurations to torch objects.
This method sets up the `torch.device`, determines if transfers can be non-blocking, and validates the
`float_dtype` string, converting it to a `torch.dtype` object.
"""
self.tensor_device: torch.device = get_safe_torch_device(self.device)
# Update device string in case a specific GPU was selected (e.g., "cuda" -> "cuda:0")
self.device = self.tensor_device.type
self.non_blocking = "cuda" in str(self.device)
# Validate and convert float_dtype string to torch dtype
if self.float_dtype is not None:
if self.float_dtype not in self.DTYPE_MAPPING:
raise ValueError(
f"Invalid float_dtype '{self.float_dtype}'. Available options: {list(self.DTYPE_MAPPING.keys())}"
)
self._target_float_dtype = self.DTYPE_MAPPING[self.float_dtype]
else:
self._target_float_dtype = None
def _process_tensor(self, tensor: torch.Tensor) -> torch.Tensor:
"""
Moves a single tensor to the target device and casts its dtype.
Handles multi-GPU scenarios by not moving a tensor if it's already on a different CUDA device than
the target, which is useful when using frameworks like Accelerate.
Args:
tensor: The input torch.Tensor.
Returns:
The processed tensor on the correct device and with the correct dtype.
"""
# Determine target device
if tensor.is_cuda and self.tensor_device.type == "cuda":
# Both tensor and target are on GPU - preserve tensor's GPU placement.
# This handles multi-GPU scenarios where Accelerate has already placed
# tensors on the correct GPU for each process.
target_device = tensor.device
else:
# Either tensor is on CPU, or we're configured for CPU.
# In both cases, use the configured device.
target_device = self.tensor_device
# MPS workaround: Convert float64 to float32 since MPS doesn't support float64
if target_device.type == "mps" and tensor.dtype == torch.float64:
tensor = tensor.to(dtype=torch.float32)
# Only move if necessary
if tensor.device != target_device:
tensor = tensor.to(target_device, non_blocking=self.non_blocking)
# Convert float dtype if specified and tensor is floating point
if self._target_float_dtype is not None and tensor.is_floating_point():
tensor = tensor.to(dtype=self._target_float_dtype)
return tensor
def __call__(self, transition: EnvTransition) -> EnvTransition:
# Create a copy of the transition
"""
Applies device and dtype conversion to all tensors in an environment transition.
It iterates through the transition, finds all `torch.Tensor` objects (including those nested in
dictionaries like `observation`), and processes them.
Args:
transition: The input `EnvTransition` object.
Returns:
A new `EnvTransition` object with all tensors moved to the target device and dtype.
"""
new_transition = transition.copy()
action = new_transition.get(TransitionKey.ACTION)
# Process observation tensors
observation = transition.get(TransitionKey.OBSERVATION)
if observation is not None:
new_observation = {
k: v.to(self.device, non_blocking=self.non_blocking) if isinstance(v, torch.Tensor) else v
for k, v in observation.items()
}
new_transition[TransitionKey.OBSERVATION] = new_observation
if action is not None and not isinstance(action, PolicyAction):
raise ValueError(f"If action is not None should be a PolicyAction type got {type(action)}")
# Process action tensor
action = transition.get(TransitionKey.ACTION)
if action is not None and isinstance(action, torch.Tensor):
new_transition[TransitionKey.ACTION] = action.to(self.device, non_blocking=self.non_blocking)
simple_tensor_keys = [
TransitionKey.ACTION,
TransitionKey.REWARD,
TransitionKey.DONE,
TransitionKey.TRUNCATED,
]
# Process reward tensor
reward = transition.get(TransitionKey.REWARD)
if reward is not None and isinstance(reward, torch.Tensor):
new_transition[TransitionKey.REWARD] = reward.to(self.device, non_blocking=self.non_blocking)
dict_tensor_keys = [
TransitionKey.OBSERVATION,
TransitionKey.COMPLEMENTARY_DATA,
]
# Process done tensor
done = transition.get(TransitionKey.DONE)
if done is not None and isinstance(done, torch.Tensor):
new_transition[TransitionKey.DONE] = done.to(self.device, non_blocking=self.non_blocking)
# Process simple, top-level tensors
for key in simple_tensor_keys:
value = transition.get(key)
if isinstance(value, torch.Tensor):
new_transition[key] = self._process_tensor(value)
# Process truncated tensor
truncated = transition.get(TransitionKey.TRUNCATED)
if truncated is not None and isinstance(truncated, torch.Tensor):
new_transition[TransitionKey.TRUNCATED] = truncated.to(
self.device, non_blocking=self.non_blocking
)
# Process tensors nested within dictionaries
for key in dict_tensor_keys:
data_dict = transition.get(key)
if data_dict is not None:
new_data_dict = {
k: self._process_tensor(v) if isinstance(v, torch.Tensor) else v
for k, v in data_dict.items()
}
new_transition[key] = new_data_dict
return new_transition
def get_config(self) -> dict[str, Any]:
"""Return configuration for serialization."""
return {"device": self.device}
"""
Returns the serializable configuration of the processor.
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
Returns:
A dictionary containing the device and float_dtype settings.
"""
return {"device": self.device, "float_dtype": self.float_dtype}
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Returns the input features unchanged.
Device and dtype transformations do not alter the fundamental definition of the features (e.g., shape).
Args:
features: A dictionary of policy features.
Returns:
The original dictionary of policy features.
"""
return features

View File

@@ -0,0 +1,62 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .converters import (
observation_to_transition,
robot_action_observation_to_transition,
transition_to_observation,
transition_to_robot_action,
)
from .core import RobotAction, RobotObservation
from .pipeline import IdentityProcessorStep, RobotProcessorPipeline
def make_default_teleop_action_processor() -> RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
]:
teleop_action_processor = RobotProcessorPipeline[tuple[RobotAction, RobotObservation], RobotAction](
steps=[IdentityProcessorStep()],
to_transition=robot_action_observation_to_transition,
to_output=transition_to_robot_action,
)
return teleop_action_processor
def make_default_robot_action_processor() -> RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
]:
robot_action_processor = RobotProcessorPipeline[tuple[RobotAction, RobotObservation], RobotAction](
steps=[IdentityProcessorStep()],
to_transition=robot_action_observation_to_transition,
to_output=transition_to_robot_action,
)
return robot_action_processor
def make_default_robot_observation_processor() -> RobotProcessorPipeline[RobotObservation, RobotObservation]:
robot_observation_processor = RobotProcessorPipeline[RobotObservation, RobotObservation](
steps=[IdentityProcessorStep()],
to_transition=observation_to_transition,
to_output=transition_to_observation,
)
return robot_observation_processor
def make_default_processors():
teleop_action_processor = make_default_teleop_action_processor()
robot_action_processor = make_default_robot_action_processor()
robot_observation_processor = make_default_robot_observation_processor()
return (teleop_action_processor, robot_action_processor, robot_observation_processor)

View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from .converters import to_tensor
from .core import EnvAction, EnvTransition, PolicyAction
from .pipeline import ActionProcessorStep, ProcessorStep, ProcessorStepRegistry
@ProcessorStepRegistry.register("torch2numpy_action_processor")
@dataclass
class Torch2NumpyActionProcessorStep(ActionProcessorStep):
"""
Converts a PyTorch tensor action to a NumPy array.
This step is useful when the output of a policy (typically a torch.Tensor)
needs to be passed to an environment or component that expects a NumPy array.
Attributes:
squeeze_batch_dim: If True, removes the first dimension of the array
if it is of size 1. This is useful for converting a
batched action of size (1, D) to a single action of size (D,).
"""
squeeze_batch_dim: bool = True
def action(self, action: PolicyAction) -> EnvAction:
if not isinstance(action, PolicyAction):
raise TypeError(
f"Expected PolicyAction or None, got {type(action).__name__}. "
"Use appropriate processor for non-tensor actions."
)
numpy_action = action.detach().cpu().numpy()
# Remove batch dimensions but preserve action dimensions.
# Only squeeze if there's a batch dimension (first dim == 1).
if (
self.squeeze_batch_dim
and numpy_action.shape
and len(numpy_action.shape) > 1
and numpy_action.shape[0] == 1
):
numpy_action = numpy_action.squeeze(0)
return numpy_action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@ProcessorStepRegistry.register("numpy2torch_action_processor")
@dataclass
class Numpy2TorchActionProcessorStep(ProcessorStep):
"""Converts a NumPy array action to a PyTorch tensor when action is present."""
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""Converts numpy action to torch tensor if action exists, otherwise passes through."""
from .core import TransitionKey
self._current_transition = transition.copy()
new_transition = self._current_transition
action = new_transition.get(TransitionKey.ACTION)
if action is not None:
if not isinstance(action, EnvAction):
raise TypeError(
f"Expected np.ndarray or None, got {type(action).__name__}. "
"Use appropriate processor for non-tensor actions."
)
torch_action = to_tensor(action, dtype=None) # Preserve original dtype
new_transition[TransitionKey.ACTION] = torch_action
return new_transition
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features

View File

@@ -0,0 +1,596 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import time
from dataclasses import dataclass
from typing import Any, Protocol, TypeVar, runtime_checkable
import numpy as np
import torch
import torchvision.transforms.functional as F # noqa: N812
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.teleoperators.teleoperator import Teleoperator
from lerobot.teleoperators.utils import TeleopEvents
from .core import EnvTransition, PolicyAction, TransitionKey
from .pipeline import (
ComplementaryDataProcessorStep,
InfoProcessorStep,
ObservationProcessorStep,
ProcessorStep,
ProcessorStepRegistry,
TruncatedProcessorStep,
)
GRIPPER_KEY = "gripper"
DISCRETE_PENALTY_KEY = "discrete_penalty"
TELEOP_ACTION_KEY = "teleop_action"
@runtime_checkable
class HasTeleopEvents(Protocol):
"""
Minimal protocol for objects that provide teleoperation events.
This protocol defines the `get_teleop_events()` method, allowing processor
steps to interact with teleoperators that support event-based controls
(like episode termination or success flagging) without needing to know the
teleoperator's specific class.
"""
def get_teleop_events(self) -> dict[str, Any]:
"""
Get extra control events from the teleoperator.
Returns:
A dictionary containing control events such as:
- `is_intervention`: bool - Whether the human is currently intervening.
- `terminate_episode`: bool - Whether to terminate the current episode.
- `success`: bool - Whether the episode was successful.
- `rerecord_episode`: bool - Whether to rerecord the episode.
"""
...
# Type variable constrained to Teleoperator subclasses that also implement events
TeleopWithEvents = TypeVar("TeleopWithEvents", bound=Teleoperator)
def _check_teleop_with_events(teleop: Teleoperator) -> None:
"""
Runtime check that a teleoperator implements the `HasTeleopEvents` protocol.
Args:
teleop: The teleoperator instance to check.
Raises:
TypeError: If the teleoperator does not have a `get_teleop_events` method.
"""
if not isinstance(teleop, HasTeleopEvents):
raise TypeError(
f"Teleoperator {type(teleop).__name__} must implement get_teleop_events() method. "
f"Compatible teleoperators: GamepadTeleop, KeyboardEndEffectorTeleop"
)
@ProcessorStepRegistry.register("add_teleop_action_as_complementary_data")
@dataclass
class AddTeleopActionAsComplimentaryDataStep(ComplementaryDataProcessorStep):
"""
Adds the raw action from a teleoperator to the transition's complementary data.
This is useful for human-in-the-loop scenarios where the human's input needs to
be available to downstream processors, for example, to override a policy's action
during an intervention.
Attributes:
teleop_device: The teleoperator instance to get the action from.
"""
teleop_device: Teleoperator
def complementary_data(self, complementary_data: dict) -> dict:
"""
Retrieves the teleoperator's action and adds it to the complementary data.
Args:
complementary_data: The incoming complementary data dictionary.
Returns:
A new dictionary with the teleoperator action added under the
`teleop_action` key.
"""
new_complementary_data = dict(complementary_data)
new_complementary_data[TELEOP_ACTION_KEY] = self.teleop_device.get_action()
return new_complementary_data
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@ProcessorStepRegistry.register("add_teleop_action_as_info")
@dataclass
class AddTeleopEventsAsInfoStep(InfoProcessorStep):
"""
Adds teleoperator control events (e.g., terminate, success) to the transition's info.
This step extracts control events from teleoperators that support event-based
interaction, making these signals available to other parts of the system.
Attributes:
teleop_device: An instance of a teleoperator that implements the
`HasTeleopEvents` protocol.
"""
teleop_device: TeleopWithEvents
def __post_init__(self):
"""Validates that the provided teleoperator supports events after initialization."""
_check_teleop_with_events(self.teleop_device)
def info(self, info: dict) -> dict:
"""
Retrieves teleoperator events and updates the info dictionary.
Args:
info: The incoming info dictionary.
Returns:
A new dictionary including the teleoperator events.
"""
new_info = dict(info)
teleop_events = self.teleop_device.get_teleop_events()
new_info.update(teleop_events)
return new_info
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@ProcessorStepRegistry.register("image_crop_resize_processor")
@dataclass
class ImageCropResizeProcessorStep(ObservationProcessorStep):
"""
Crops and/or resizes image observations.
This step iterates through all image keys in an observation dictionary and applies
the specified transformations. It handles device placement, moving tensors to the
CPU if necessary for operations not supported on certain accelerators like MPS.
Attributes:
crop_params_dict: A dictionary mapping image keys to cropping parameters
(top, left, height, width).
resize_size: A tuple (height, width) to resize all images to.
"""
crop_params_dict: dict[str, tuple[int, int, int, int]] | None = None
resize_size: tuple[int, int] | None = None
def observation(self, observation: dict) -> dict:
"""
Applies cropping and resizing to all images in the observation dictionary.
Args:
observation: The observation dictionary, potentially containing image tensors.
Returns:
A new observation dictionary with transformed images.
"""
if self.resize_size is None and not self.crop_params_dict:
return observation
new_observation = dict(observation)
# Process all image keys in the observation
for key in observation:
if "image" not in key:
continue
image = observation[key]
device = image.device
# NOTE (maractingi): No mps kernel for crop and resize, so we need to move to cpu
if device.type == "mps":
image = image.cpu()
# Crop if crop params are provided for this key
if self.crop_params_dict is not None and key in self.crop_params_dict:
crop_params = self.crop_params_dict[key]
image = F.crop(image, *crop_params)
if self.resize_size is not None:
image = F.resize(image, self.resize_size)
image = image.clamp(0.0, 1.0)
new_observation[key] = image.to(device)
return new_observation
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary with the crop parameters and resize dimensions.
"""
return {
"crop_params_dict": self.crop_params_dict,
"resize_size": self.resize_size,
}
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Updates the image feature shapes in the policy features dictionary if resizing is applied.
Args:
features: The policy features dictionary.
Returns:
The updated policy features dictionary with new image shapes.
"""
if self.resize_size is None:
return features
for key in features[PipelineFeatureType.OBSERVATION]:
if "image" in key:
nb_channel = features[PipelineFeatureType.OBSERVATION][key].shape[0]
features[PipelineFeatureType.OBSERVATION][key] = PolicyFeature(
type=features[PipelineFeatureType.OBSERVATION][key].type,
shape=(nb_channel, *self.resize_size),
)
return features
@dataclass
@ProcessorStepRegistry.register("time_limit_processor")
class TimeLimitProcessorStep(TruncatedProcessorStep):
"""
Tracks episode steps and enforces a time limit by truncating the episode.
Attributes:
max_episode_steps: The maximum number of steps allowed per episode.
current_step: The current step count for the active episode.
"""
max_episode_steps: int
current_step: int = 0
def truncated(self, truncated: bool) -> bool:
"""
Increments the step counter and sets the truncated flag if the time limit is reached.
Args:
truncated: The incoming truncated flag.
Returns:
True if the episode step limit is reached, otherwise the incoming value.
"""
self.current_step += 1
if self.current_step >= self.max_episode_steps:
truncated = True
# TODO (steven): missing an else truncated = False?
return truncated
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary containing the `max_episode_steps`.
"""
return {
"max_episode_steps": self.max_episode_steps,
}
def reset(self) -> None:
"""Resets the step counter, typically called at the start of a new episode."""
self.current_step = 0
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@dataclass
@ProcessorStepRegistry.register("gripper_penalty_processor")
class GripperPenaltyProcessorStep(ComplementaryDataProcessorStep):
"""
Applies a penalty for inefficient gripper usage.
This step penalizes actions that attempt to close an already closed gripper or
open an already open one, based on position thresholds.
Attributes:
penalty: The negative reward value to apply.
max_gripper_pos: The maximum position value for the gripper, used for normalization.
"""
penalty: float = -0.01
max_gripper_pos: float = 30.0
def complementary_data(self, complementary_data: dict) -> dict:
"""
Calculates the gripper penalty and adds it to the complementary data.
Args:
complementary_data: The incoming complementary data, which should contain
raw joint positions.
Returns:
A new complementary data dictionary with the `discrete_penalty` key added.
"""
action = self.transition.get(TransitionKey.ACTION)
raw_joint_positions = complementary_data.get("raw_joint_positions", None)
if raw_joint_positions is None:
return complementary_data
current_gripper_pos = raw_joint_positions.get(GRIPPER_KEY, None)
if current_gripper_pos is None:
return complementary_data
# Gripper action is a PolicyAction at this stage
gripper_action = action[-1].item()
gripper_action_normalized = gripper_action / self.max_gripper_pos
# Normalize gripper state and action
gripper_state_normalized = current_gripper_pos / self.max_gripper_pos
# Calculate penalty boolean as in original
gripper_penalty_bool = (gripper_state_normalized < 0.5 and gripper_action_normalized > 0.5) or (
gripper_state_normalized > 0.75 and gripper_action_normalized < 0.5
)
gripper_penalty = self.penalty * int(gripper_penalty_bool)
# Create new complementary data with penalty info
new_complementary_data = dict(complementary_data)
new_complementary_data[DISCRETE_PENALTY_KEY] = gripper_penalty
return new_complementary_data
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary containing the penalty value and max gripper position.
"""
return {
"penalty": self.penalty,
"max_gripper_pos": self.max_gripper_pos,
}
def reset(self) -> None:
"""Resets the processor's internal state."""
pass
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@dataclass
@ProcessorStepRegistry.register("intervention_action_processor")
class InterventionActionProcessorStep(ProcessorStep):
"""
Handles human intervention, overriding policy actions and managing episode termination.
When an intervention is detected (via teleoperator events in the `info` dict),
this step replaces the policy's action with the human's teleoperated action.
It also processes signals to terminate the episode or flag success.
Attributes:
use_gripper: Whether to include the gripper in the teleoperated action.
terminate_on_success: If True, automatically sets the `done` flag when a
`success` event is received.
"""
use_gripper: bool = False
terminate_on_success: bool = True
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""
Processes the transition to handle interventions.
Args:
transition: The incoming environment transition.
Returns:
The modified transition, potentially with an overridden action, updated
reward, and termination status.
"""
action = transition.get(TransitionKey.ACTION)
if not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
# Get intervention signals from complementary data
info = transition.get(TransitionKey.INFO, {})
complementary_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
teleop_action = complementary_data.get(TELEOP_ACTION_KEY, {})
is_intervention = info.get(TeleopEvents.IS_INTERVENTION, False)
terminate_episode = info.get(TeleopEvents.TERMINATE_EPISODE, False)
success = info.get(TeleopEvents.SUCCESS, False)
rerecord_episode = info.get(TeleopEvents.RERECORD_EPISODE, False)
new_transition = transition.copy()
# Override action if intervention is active
if is_intervention and teleop_action is not None:
if isinstance(teleop_action, dict):
# Convert teleop_action dict to tensor format
action_list = [
teleop_action.get("delta_x", 0.0),
teleop_action.get("delta_y", 0.0),
teleop_action.get("delta_z", 0.0),
]
if self.use_gripper:
action_list.append(teleop_action.get(GRIPPER_KEY, 1.0))
elif isinstance(teleop_action, np.ndarray):
action_list = teleop_action.tolist()
else:
action_list = teleop_action
teleop_action_tensor = torch.tensor(action_list, dtype=action.dtype, device=action.device)
new_transition[TransitionKey.ACTION] = teleop_action_tensor
# Handle episode termination
new_transition[TransitionKey.DONE] = bool(terminate_episode) or (
self.terminate_on_success and success
)
new_transition[TransitionKey.REWARD] = float(success)
# Update info with intervention metadata
info = new_transition.get(TransitionKey.INFO, {})
info[TeleopEvents.IS_INTERVENTION] = is_intervention
info[TeleopEvents.RERECORD_EPISODE] = rerecord_episode
info[TeleopEvents.SUCCESS] = success
new_transition[TransitionKey.INFO] = info
# Update complementary data with teleop action
complementary_data = new_transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
complementary_data[TELEOP_ACTION_KEY] = new_transition.get(TransitionKey.ACTION)
new_transition[TransitionKey.COMPLEMENTARY_DATA] = complementary_data
return new_transition
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary containing the step's configuration attributes.
"""
return {
"use_gripper": self.use_gripper,
"terminate_on_success": self.terminate_on_success,
}
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@dataclass
@ProcessorStepRegistry.register("reward_classifier_processor")
class RewardClassifierProcessorStep(ProcessorStep):
"""
Applies a pretrained reward classifier to image observations to predict success.
This step uses a model to determine if the current state is successful, updating
the reward and potentially terminating the episode.
Attributes:
pretrained_path: Path to the pretrained reward classifier model.
device: The device to run the classifier on.
success_threshold: The probability threshold to consider a prediction as successful.
success_reward: The reward value to assign on success.
terminate_on_success: If True, terminates the episode upon successful classification.
reward_classifier: The loaded classifier model instance.
"""
pretrained_path: str | None = None
device: str = "cpu"
success_threshold: float = 0.5
success_reward: float = 1.0
terminate_on_success: bool = True
reward_classifier: Any = None
def __post_init__(self):
"""Initializes the reward classifier model after the dataclass is created."""
if self.pretrained_path is not None:
from lerobot.policies.sac.reward_model.modeling_classifier import Classifier
self.reward_classifier = Classifier.from_pretrained(self.pretrained_path)
self.reward_classifier.to(self.device)
self.reward_classifier.eval()
def __call__(self, transition: EnvTransition) -> EnvTransition:
"""
Processes a transition, applying the reward classifier to its image observations.
Args:
transition: The incoming environment transition.
Returns:
The modified transition with an updated reward and done flag based on the
classifier's prediction.
"""
new_transition = transition.copy()
observation = new_transition.get(TransitionKey.OBSERVATION)
if observation is None or self.reward_classifier is None:
return new_transition
# Extract images from observation
images = {key: value for key, value in observation.items() if "image" in key}
if not images:
return new_transition
# Run reward classifier
start_time = time.perf_counter()
with torch.inference_mode():
success = self.reward_classifier.predict_reward(images, threshold=self.success_threshold)
classifier_frequency = 1 / (time.perf_counter() - start_time)
# Calculate reward and termination
reward = new_transition.get(TransitionKey.REWARD, 0.0)
terminated = new_transition.get(TransitionKey.DONE, False)
if math.isclose(success, 1, abs_tol=1e-2):
reward = self.success_reward
if self.terminate_on_success:
terminated = True
# Update transition
new_transition[TransitionKey.REWARD] = reward
new_transition[TransitionKey.DONE] = terminated
# Update info with classifier frequency
info = new_transition.get(TransitionKey.INFO, {})
info["reward_classifier_frequency"] = classifier_frequency
new_transition[TransitionKey.INFO] = info
return new_transition
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary containing the step's configuration attributes.
"""
return {
"device": self.device,
"success_threshold": self.success_threshold,
"success_reward": self.success_reward,
"terminate_on_success": self.terminate_on_success,
}
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features

View File

@@ -0,0 +1,211 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any
import torch
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.constants import OBS_STATE
from lerobot.processor.pipeline import (
ObservationProcessorStep,
ProcessorStepRegistry,
)
from lerobot.robots import Robot
@dataclass
@ProcessorStepRegistry.register("joint_velocity_processor")
class JointVelocityProcessorStep(ObservationProcessorStep):
"""
Calculates and appends joint velocity information to the observation state.
This step computes the velocity of each joint by calculating the finite
difference between the current and the last observed joint positions. The
resulting velocity vector is then concatenated to the original state vector.
Attributes:
dt: The time step (delta time) in seconds between observations, used for
calculating velocity.
last_joint_positions: Stores the joint positions from the previous step
to enable velocity calculation.
"""
dt: float = 0.1
last_joint_positions: torch.Tensor | None = None
def observation(self, observation: dict) -> dict:
"""
Computes joint velocities and adds them to the observation state.
Args:
observation: The input observation dictionary, expected to contain
an `observation.state` key with joint positions.
Returns:
A new observation dictionary with the `observation.state` tensor
extended to include joint velocities.
Raises:
ValueError: If `observation.state` is not found in the observation.
"""
# Get current joint positions (assuming they're in observation.state)
current_positions = observation.get(OBS_STATE)
if current_positions is None:
raise ValueError(f"{OBS_STATE} is not in observation")
# Initialize last joint positions if not already set
if self.last_joint_positions is None:
self.last_joint_positions = current_positions.clone()
joint_velocities = torch.zeros_like(current_positions)
else:
# Compute velocities
joint_velocities = (current_positions - self.last_joint_positions) / self.dt
self.last_joint_positions = current_positions.clone()
# Extend observation with velocities
extended_state = torch.cat([current_positions, joint_velocities], dim=-1)
# Create new observation dict
new_observation = dict(observation)
new_observation[OBS_STATE] = extended_state
return new_observation
def get_config(self) -> dict[str, Any]:
"""
Returns the configuration of the step for serialization.
Returns:
A dictionary containing the time step `dt`.
"""
return {
"dt": self.dt,
}
def reset(self) -> None:
"""Resets the internal state, clearing the last known joint positions."""
self.last_joint_positions = None
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Updates the `observation.state` feature to reflect the added velocities.
This method doubles the size of the first dimension of the `observation.state`
shape to account for the concatenation of position and velocity vectors.
Args:
features: The policy features dictionary.
Returns:
The updated policy features dictionary.
"""
if OBS_STATE in features[PipelineFeatureType.OBSERVATION]:
original_feature = features[PipelineFeatureType.OBSERVATION][OBS_STATE]
# Double the shape to account for positions + velocities
new_shape = (original_feature.shape[0] * 2,) + original_feature.shape[1:]
features[PipelineFeatureType.OBSERVATION][OBS_STATE] = PolicyFeature(
type=original_feature.type, shape=new_shape
)
return features
@dataclass
@ProcessorStepRegistry.register("current_processor")
class MotorCurrentProcessorStep(ObservationProcessorStep):
"""
Reads motor currents from a robot and appends them to the observation state.
This step queries the robot's hardware interface to get the present current
for each motor and concatenates this information to the existing state vector.
Attributes:
robot: An instance of a `lerobot` Robot class that provides access to
the hardware bus.
"""
robot: Robot | None = None
def observation(self, observation: dict) -> dict:
"""
Fetches motor currents and adds them to the observation state.
Args:
observation: The input observation dictionary.
Returns:
A new observation dictionary with the `observation.state` tensor
extended to include motor currents.
Raises:
ValueError: If the `robot` attribute has not been set.
"""
# Get current values from robot state
if self.robot is None:
raise ValueError("Robot is not set")
present_current_dict = self.robot.bus.sync_read("Present_Current") # type: ignore[attr-defined]
motor_currents = torch.tensor(
[present_current_dict[name] for name in self.robot.bus.motors], # type: ignore[attr-defined]
dtype=torch.float32,
).unsqueeze(0)
current_state = observation.get(OBS_STATE)
if current_state is None:
return observation
extended_state = torch.cat([current_state, motor_currents], dim=-1)
# Create new observation dict
new_observation = dict(observation)
new_observation[OBS_STATE] = extended_state
return new_observation
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Updates the `observation.state` feature to reflect the added motor currents.
This method increases the size of the first dimension of the `observation.state`
shape by the number of motors in the robot.
Args:
features: The policy features dictionary.
Returns:
The updated policy features dictionary.
"""
if OBS_STATE in features[PipelineFeatureType.OBSERVATION] and self.robot is not None:
original_feature = features[PipelineFeatureType.OBSERVATION][OBS_STATE]
# Add motor current dimensions to the original state shape
num_motors = 0
if hasattr(self.robot, "bus") and hasattr(self.robot.bus, "motors"): # type: ignore[attr-defined]
num_motors = len(self.robot.bus.motors) # type: ignore[attr-defined]
if num_motors > 0:
new_shape = (original_feature.shape[0] + num_motors,) + original_feature.shape[1:]
features[PipelineFeatureType.OBSERVATION][OBS_STATE] = PolicyFeature(
type=original_feature.type, shape=new_shape
)
return features

View File

@@ -0,0 +1,646 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A generic script to migrate LeRobot policies with built-in normalization layers to the new
pipeline-based processor system.
This script performs the following steps:
1. Loads a pretrained policy model and its configuration from a local path or the
Hugging Face Hub.
2. Scans the model's state dictionary to extract normalization statistics (e.g., mean,
std, min, max) for all features.
3. Creates two new processor pipelines:
- A preprocessor that normalizes inputs (observations) and outputs (actions).
- A postprocessor that unnormalizes outputs (actions) for inference.
4. Removes the original normalization layers from the model's state dictionary,
creating a "clean" model.
5. Saves the new clean model, the preprocessor, the postprocessor, and a generated
model card to a new directory.
6. Optionally pushes all the new artifacts to the Hugging Face Hub.
Usage:
python src/lerobot/processor/migrate_policy_normalization.py \
--pretrained-path lerobot/act_aloha_sim_transfer_cube_human \
--push-to-hub \
--branch main
Note: This script now uses the modern `make_pre_post_processors` and `make_policy_config`
factory functions from `lerobot.policies.factory` to create processors and configurations,
ensuring consistency with the current codebase.
The script extracts normalization statistics from the old model's state_dict, creates clean
processor pipelines using the factory functions, and saves a migrated model that is compatible
with the new PolicyProcessorPipeline architecture.
"""
import argparse
import json
import os
from pathlib import Path
from typing import Any
import torch
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file as load_safetensors
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.policies.factory import get_policy_class, make_policy_config, make_pre_post_processors
def extract_normalization_stats(state_dict: dict[str, torch.Tensor]) -> dict[str, dict[str, torch.Tensor]]:
"""
Scans a model's state_dict to find and extract normalization statistics.
This function identifies keys corresponding to normalization layers (e.g., those
for mean, std, min, max) based on a set of predefined patterns and organizes
them into a nested dictionary.
Args:
state_dict: The state dictionary of a pretrained policy model.
Returns:
A nested dictionary where outer keys are feature names (e.g.,
'observation.state') and inner keys are statistic types ('mean', 'std'),
mapping to their corresponding tensor values.
"""
stats = {}
# Define patterns to match and their prefixes to remove
normalization_patterns = [
"normalize_inputs.buffer_",
"unnormalize_outputs.buffer_",
"normalize_targets.buffer_",
"normalize.", # Must come after normalize_* patterns
"unnormalize.", # Must come after unnormalize_* patterns
"input_normalizer.",
"output_normalizer.",
"normalalize_inputs.",
"unnormalize_outputs.",
"normalize_targets.",
"unnormalize_targets.",
]
# Process each key in state_dict
for key, tensor in state_dict.items():
# Try each pattern
for pattern in normalization_patterns:
if key.startswith(pattern):
# Extract the remaining part after the pattern
remaining = key[len(pattern) :]
parts = remaining.split(".")
# Need at least feature name and stat type
if len(parts) >= 2:
# Last part is the stat type (mean, std, min, max, etc.)
stat_type = parts[-1]
# Everything else is the feature name
feature_name = ".".join(parts[:-1]).replace("_", ".")
# Add to stats
if feature_name not in stats:
stats[feature_name] = {}
stats[feature_name][stat_type] = tensor.clone()
# Only process the first matching pattern
break
return stats
def detect_features_and_norm_modes(
config: dict[str, Any], stats: dict[str, dict[str, torch.Tensor]]
) -> tuple[dict[str, PolicyFeature], dict[FeatureType, NormalizationMode]]:
"""
Infers policy features and normalization modes from the model config and stats.
This function first attempts to find feature definitions and normalization
mappings directly from the policy's configuration file. If this information is
not present, it infers it from the extracted normalization statistics, using
tensor shapes to determine feature shapes and the presence of specific stat
keys (e.g., 'mean'/'std' vs 'min'/'max') to determine the normalization mode.
It applies sensible defaults if inference is not possible.
Args:
config: The policy's configuration dictionary from `config.json`.
stats: The normalization statistics extracted from the model's state_dict.
Returns:
A tuple containing:
- A dictionary mapping feature names to `PolicyFeature` objects.
- A dictionary mapping `FeatureType` enums to `NormalizationMode` enums.
"""
features = {}
norm_modes = {}
# First, check if there's a normalization_mapping in the config
if "normalization_mapping" in config:
print(f"Found normalization_mapping in config: {config['normalization_mapping']}")
# Extract normalization modes from config
for feature_type_str, mode_str in config["normalization_mapping"].items():
# Convert string to FeatureType enum
try:
if feature_type_str == "VISUAL":
feature_type = FeatureType.VISUAL
elif feature_type_str == "STATE":
feature_type = FeatureType.STATE
elif feature_type_str == "ACTION":
feature_type = FeatureType.ACTION
else:
print(f"Warning: Unknown feature type '{feature_type_str}', skipping")
continue
except (AttributeError, ValueError):
print(f"Warning: Could not parse feature type '{feature_type_str}', skipping")
continue
# Convert string to NormalizationMode enum
try:
if mode_str == "MEAN_STD":
mode = NormalizationMode.MEAN_STD
elif mode_str == "MIN_MAX":
mode = NormalizationMode.MIN_MAX
elif mode_str == "IDENTITY":
mode = NormalizationMode.IDENTITY
else:
print(
f"Warning: Unknown normalization mode '{mode_str}' for feature type '{feature_type_str}'"
)
continue
except (AttributeError, ValueError):
print(f"Warning: Could not parse normalization mode '{mode_str}', skipping")
continue
norm_modes[feature_type] = mode
# Try to extract from config
if "features" in config:
for key, feature_config in config["features"].items():
shape = feature_config.get("shape", feature_config.get("dim"))
shape = (shape,) if isinstance(shape, int) else tuple(shape)
# Determine feature type
if "image" in key or "visual" in key:
feature_type = FeatureType.VISUAL
elif "state" in key:
feature_type = FeatureType.STATE
elif "action" in key:
feature_type = FeatureType.ACTION
else:
feature_type = FeatureType.STATE # Default
features[key] = PolicyFeature(feature_type, shape)
# If no features in config, infer from stats
if not features:
for key, stat_dict in stats.items():
# Get shape from any stat tensor
tensor = next(iter(stat_dict.values()))
shape = tuple(tensor.shape)
# Determine feature type based on key
if "image" in key or "visual" in key or "pixels" in key:
feature_type = FeatureType.VISUAL
elif "state" in key or "joint" in key or "position" in key:
feature_type = FeatureType.STATE
elif "action" in key:
feature_type = FeatureType.ACTION
else:
feature_type = FeatureType.STATE
features[key] = PolicyFeature(feature_type, shape)
# If normalization modes weren't in config, determine based on available stats
if not norm_modes:
for key, stat_dict in stats.items():
if key in features:
if "mean" in stat_dict and "std" in stat_dict:
feature_type = features[key].type
if feature_type not in norm_modes:
norm_modes[feature_type] = NormalizationMode.MEAN_STD
elif "min" in stat_dict and "max" in stat_dict:
feature_type = features[key].type
if feature_type not in norm_modes:
norm_modes[feature_type] = NormalizationMode.MIN_MAX
# Default normalization modes if not detected
if FeatureType.VISUAL not in norm_modes:
norm_modes[FeatureType.VISUAL] = NormalizationMode.MEAN_STD
if FeatureType.STATE not in norm_modes:
norm_modes[FeatureType.STATE] = NormalizationMode.MIN_MAX
if FeatureType.ACTION not in norm_modes:
norm_modes[FeatureType.ACTION] = NormalizationMode.MEAN_STD
return features, norm_modes
def remove_normalization_layers(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
"""
Creates a new state_dict with all normalization-related layers removed.
This function filters the original state dictionary, excluding any keys that
match a set of predefined patterns associated with normalization modules.
Args:
state_dict: The original model state dictionary.
Returns:
A new state dictionary containing only the core model weights, without
any normalization parameters.
"""
new_state_dict = {}
# Patterns to remove
remove_patterns = [
"normalize_inputs.",
"unnormalize_outputs.",
"normalize_targets.", # Added pattern for target normalization
"normalize.",
"unnormalize.",
"input_normalizer.",
"output_normalizer.",
"normalizer.",
]
for key, tensor in state_dict.items():
should_remove = any(pattern in key for pattern in remove_patterns)
if not should_remove:
new_state_dict[key] = tensor
return new_state_dict
def clean_state_dict(
state_dict: dict[str, torch.Tensor], remove_str: str = "._orig_mod"
) -> dict[str, torch.Tensor]:
"""
Remove a substring (e.g. '._orig_mod') from all keys in a state dict.
Args:
state_dict (dict): The original state dict.
remove_str (str): The substring to remove from the keys.
Returns:
dict: A new state dict with cleaned keys.
"""
new_state_dict = {}
for k, v in state_dict.items():
new_k = k.replace(remove_str, "")
new_state_dict[new_k] = v
return new_state_dict
def convert_features_to_policy_features(features_dict: dict[str, dict]) -> dict[str, PolicyFeature]:
"""
Converts a feature dictionary from the old config format to the new `PolicyFeature` format.
Args:
features_dict: The feature dictionary in the old format, where values are
simple dictionaries (e.g., `{"shape": [7]}`).
Returns:
A dictionary mapping feature names to `PolicyFeature` dataclass objects.
"""
converted_features = {}
for key, feature_dict in features_dict.items():
# Determine feature type based on key
if "image" in key or "visual" in key:
feature_type = FeatureType.VISUAL
elif "state" in key:
feature_type = FeatureType.STATE
elif "action" in key:
feature_type = FeatureType.ACTION
else:
feature_type = FeatureType.STATE
# Get shape from feature dict
shape = feature_dict.get("shape", feature_dict.get("dim"))
shape = (shape,) if isinstance(shape, int) else tuple(shape) if shape is not None else ()
converted_features[key] = PolicyFeature(feature_type, shape)
return converted_features
def load_model_from_hub(
repo_id: str, revision: str | None = None
) -> tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
"""
Downloads and loads a model's state_dict and configs from the Hugging Face Hub.
Args:
repo_id: The repository ID on the Hub (e.g., 'lerobot/aloha').
revision: The specific git revision (branch, tag, or commit hash) to use.
Returns:
A tuple containing the model's state dictionary, the policy configuration,
and the training configuration.
"""
# Download files.
safetensors_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors", revision=revision)
config_path = hf_hub_download(repo_id=repo_id, filename="config.json", revision=revision)
train_config_path = hf_hub_download(repo_id=repo_id, filename="train_config.json", revision=revision)
# Load state_dict
state_dict = load_safetensors(safetensors_path)
# Load config
with open(config_path) as f:
config = json.load(f)
with open(train_config_path) as f:
train_config = json.load(f)
return state_dict, config, train_config
def main():
parser = argparse.ArgumentParser(
description="Migrate policy models with normalization layers to new pipeline system"
)
parser.add_argument(
"--pretrained-path",
type=str,
required=True,
help="Path to pretrained model (hub repo or local directory)",
)
parser.add_argument(
"--output-dir",
type=str,
default=None,
help="Output directory for migrated model (default: same as pretrained-path)",
)
parser.add_argument("--push-to-hub", action="store_true", help="Push migrated model to hub")
parser.add_argument(
"--hub-repo-id",
type=str,
default=None,
help="Hub repository ID for pushing (default: same as pretrained-path)",
)
parser.add_argument("--revision", type=str, default=None, help="Revision of the model to load")
parser.add_argument("--private", action="store_true", help="Make the hub repository private")
parser.add_argument(
"--branch",
type=str,
default=None,
help="Git branch to use when pushing to hub. If specified, a PR will be created automatically (default: push directly to main)",
)
args = parser.parse_args()
# Load model and config
print(f"Loading model from {args.pretrained_path}...")
if os.path.isdir(args.pretrained_path):
# Local directory
state_dict = load_safetensors(os.path.join(args.pretrained_path, "model.safetensors"))
with open(os.path.join(args.pretrained_path, "config.json")) as f:
config = json.load(f)
with open(os.path.join(args.pretrained_path, "train_config.json")) as f:
train_config = json.load(f)
else:
# Hub repository
state_dict, config, train_config = load_model_from_hub(args.pretrained_path, args.revision)
# Extract normalization statistics
print("Extracting normalization statistics...")
stats = extract_normalization_stats(state_dict)
print(f"Found normalization statistics for: {list(stats.keys())}")
# Detect input features and normalization modes
print("Detecting features and normalization modes...")
features, norm_map = detect_features_and_norm_modes(config, stats)
print(f"Detected features: {list(features.keys())}")
print(f"Normalization modes: {norm_map}")
# Remove normalization layers from state_dict
print("Removing normalization layers from model...")
new_state_dict = remove_normalization_layers(state_dict)
new_state_dict = clean_state_dict(new_state_dict, remove_str="._orig_mod")
removed_keys = set(state_dict.keys()) - set(new_state_dict.keys())
if removed_keys:
print(f"Removed {len(removed_keys)} normalization layer keys")
# Determine output path
if args.output_dir:
output_dir = Path(args.output_dir)
else:
if os.path.isdir(args.pretrained_path):
output_dir = Path(args.pretrained_path).parent / f"{Path(args.pretrained_path).name}_migrated"
else:
output_dir = Path(f"./{args.pretrained_path.replace('/', '_')}_migrated")
output_dir.mkdir(parents=True, exist_ok=True)
# Extract policy type from config
if "type" not in config:
raise ValueError("Policy type not found in config.json. The config must contain a 'type' field.")
policy_type = config["type"]
print(f"Detected policy type: {policy_type}")
# Clean up config - remove fields that shouldn't be passed to config constructor
cleaned_config = dict(config)
# Remove fields that are not part of the config class constructors
fields_to_remove = ["normalization_mapping", "type"]
for field in fields_to_remove:
if field in cleaned_config:
print(f"Removing '{field}' field from config")
del cleaned_config[field]
# Convert input_features and output_features to PolicyFeature objects if they exist
if "input_features" in cleaned_config:
cleaned_config["input_features"] = convert_features_to_policy_features(
cleaned_config["input_features"]
)
if "output_features" in cleaned_config:
cleaned_config["output_features"] = convert_features_to_policy_features(
cleaned_config["output_features"]
)
# Add normalization mapping to config
cleaned_config["normalization_mapping"] = norm_map
# Create policy configuration using the factory
print(f"Creating {policy_type} policy configuration...")
policy_config = make_policy_config(policy_type, **cleaned_config)
# Create policy instance using the factory
print(f"Instantiating {policy_type} policy...")
policy_class = get_policy_class(policy_type)
policy = policy_class(policy_config)
# Load the cleaned state dict
policy.load_state_dict(new_state_dict, strict=True)
print("Successfully loaded cleaned state dict into policy model")
# Create preprocessor and postprocessor using the factory
print("Creating preprocessor and postprocessor using make_pre_post_processors...")
preprocessor, postprocessor = make_pre_post_processors(policy_cfg=policy_config, dataset_stats=stats)
# Determine hub repo ID if pushing to hub
hub_repo_id = None
if args.push_to_hub:
if args.hub_repo_id:
hub_repo_id = args.hub_repo_id
else:
if not os.path.isdir(args.pretrained_path):
# Use same repo with "_migrated" suffix
hub_repo_id = f"{args.pretrained_path}_migrated"
else:
raise ValueError("--hub-repo-id must be specified when pushing local model to hub")
# Save all components to local directory first
print(f"Saving preprocessor to {output_dir}...")
preprocessor.save_pretrained(output_dir)
print(f"Saving postprocessor to {output_dir}...")
postprocessor.save_pretrained(output_dir)
print(f"Saving model to {output_dir}...")
policy.save_pretrained(output_dir)
# Generate and save model card
print("Generating model card...")
# Get metadata from original config
dataset_repo_id = train_config.get("repo_id", "unknown")
license = config.get("license", "apache-2.0")
tags = config.get("tags", ["robotics", "lerobot", policy_type]) or ["robotics", "lerobot", policy_type]
tags = set(tags).union({"robotics", "lerobot", policy_type})
tags = list(tags)
# Generate model card
card = policy.generate_model_card(
dataset_repo_id=dataset_repo_id, model_type=policy_type, license=license, tags=tags
)
# Save model card locally
card.save(str(output_dir / "README.md"))
print(f"Model card saved to {output_dir / 'README.md'}")
# Push all files to hub in a single operation if requested
if args.push_to_hub and hub_repo_id:
api = HfApi()
# Determine if we should create a PR (automatically if branch is specified)
create_pr = args.branch is not None
target_location = f"branch '{args.branch}'" if args.branch else "main branch"
print(f"Pushing all migrated files to {hub_repo_id} on {target_location}...")
# Upload all files in a single commit with automatic PR creation if branch specified
commit_message = "Migrate policy to PolicyProcessorPipeline system"
commit_description = None
if create_pr:
# Separate commit description for PR body
commit_description = """🤖 **Automated Policy Migration to PolicyProcessorPipeline**
This PR migrates your model to the new LeRobot policy format using the modern PolicyProcessorPipeline architecture.
## What Changed
### ✨ **New Architecture - PolicyProcessorPipeline**
Your model now uses external PolicyProcessorPipeline components for data processing instead of built-in normalization layers. This provides:
- **Modularity**: Separate preprocessing and postprocessing pipelines
- **Flexibility**: Easy to swap, configure, and debug processing steps
- **Compatibility**: Works with the latest LeRobot ecosystem
### 🔧 **Normalization Extraction**
We've extracted normalization statistics from your model's state_dict and removed the built-in normalization layers:
- **Extracted patterns**: `normalize_inputs.*`, `unnormalize_outputs.*`, `normalize.*`, `unnormalize.*`, `input_normalizer.*`, `output_normalizer.*`
- **Statistics preserved**: Mean, std, min, max values for all features
- **Clean model**: State dict now contains only core model weights
### 📦 **Files Added**
- **preprocessor_config.json**: Configuration for input preprocessing pipeline
- **postprocessor_config.json**: Configuration for output postprocessing pipeline
- **model.safetensors**: Clean model weights without normalization layers
- **config.json**: Updated model configuration
- **train_config.json**: Training configuration
- **README.md**: Updated model card with migration information
### 🚀 **Benefits**
- **Backward Compatible**: Your model behavior remains identical
- **Future Ready**: Compatible with latest LeRobot features and updates
- **Debuggable**: Easy to inspect and modify processing steps
- **Portable**: Processors can be shared and reused across models
### 💻 **Usage**
```python
# Load your migrated model
from lerobot.policies import get_policy_class
from lerobot.processor import PolicyProcessorPipeline
# The preprocessor and postprocessor are now external
preprocessor = PolicyProcessorPipeline.from_pretrained("your-model-repo", config_filename="preprocessor_config.json")
postprocessor = PolicyProcessorPipeline.from_pretrained("your-model-repo", config_filename="postprocessor_config.json")
policy = get_policy_class("your-policy-type").from_pretrained("your-model-repo")
# Process data through the pipeline
processed_batch = preprocessor(raw_batch)
action = policy(processed_batch)
final_action = postprocessor(action)
```
*Generated automatically by the LeRobot policy migration script*"""
upload_kwargs = {
"repo_id": hub_repo_id,
"folder_path": output_dir,
"repo_type": "model",
"commit_message": commit_message,
"revision": args.branch,
"create_pr": create_pr,
"allow_patterns": ["*.json", "*.safetensors", "*.md"],
"ignore_patterns": ["*.tmp", "*.log"],
}
# Add commit_description for PR body if creating PR
if create_pr and commit_description:
upload_kwargs["commit_description"] = commit_description
api.upload_folder(**upload_kwargs)
if create_pr:
print("All files pushed and pull request created successfully!")
else:
print("All files pushed to main branch successfully!")
print("\nMigration complete!")
print(f"Migrated model saved to: {output_dir}")
if args.push_to_hub and hub_repo_id:
if args.branch:
print(
f"Successfully pushed all files to branch '{args.branch}' and created PR on https://huggingface.co/{hub_repo_id}"
)
else:
print(f"Successfully pushed to https://huggingface.co/{hub_repo_id}")
if args.branch:
print(f"\nView the branch at: https://huggingface.co/{hub_repo_id}/tree/{args.branch}")
print(
f"View the PR at: https://huggingface.co/{hub_repo_id}/discussions (look for the most recent PR)"
)
else:
print(f"\nView the changes at: https://huggingface.co/{hub_repo_id}")
if __name__ == "__main__":
main()

View File

@@ -1,67 +1,353 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Mapping
from copy import deepcopy
from dataclasses import dataclass, field
from typing import Any
import numpy as np
import torch
from torch import Tensor
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.configs.types import FeatureType, NormalizationMode, PipelineFeatureType, PolicyFeature
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.processor.pipeline import EnvTransition, ProcessorStepRegistry, TransitionKey
from .converters import from_tensor_to_numpy, to_tensor
from .core import EnvTransition, PolicyAction, TransitionKey
from .pipeline import PolicyProcessorPipeline, ProcessorStep, ProcessorStepRegistry
def _convert_stats_to_tensors(stats: dict[str, dict[str, Any]]) -> dict[str, dict[str, Tensor]]:
"""Convert numpy arrays and other types to torch tensors."""
tensor_stats: dict[str, dict[str, Tensor]] = {}
for key, sub in stats.items():
tensor_stats[key] = {}
for stat_name, value in sub.items():
if isinstance(value, np.ndarray):
tensor_val = torch.from_numpy(value.astype(np.float32))
elif isinstance(value, torch.Tensor):
tensor_val = value.to(dtype=torch.float32)
elif isinstance(value, (int, float, list, tuple)):
tensor_val = torch.tensor(value, dtype=torch.float32)
else:
raise TypeError(f"Unsupported type for stats['{key}']['{stat_name}']: {type(value)}")
tensor_stats[key][stat_name] = tensor_val
return tensor_stats
@dataclass
class _NormalizationMixin:
"""
A mixin class providing core functionality for normalization and unnormalization.
This class manages normalization statistics (`stats`), converts them to tensors for
efficient computation, handles device placement, and implements the logic for
applying normalization transformations (mean/std and min/max). It is designed to
be inherited by concrete `ProcessorStep` implementations and should not be used
directly.
**Stats Override Preservation:**
When stats are explicitly provided during construction (e.g., via overrides in
`DataProcessorPipeline.from_pretrained()`), they are preserved even when
`load_state_dict()` is called. This allows users to override normalization
statistics from saved models while keeping the rest of the model state intact.
Examples:
```python
# Common use case: Override with dataset stats
from lerobot.datasets import LeRobotDataset
dataset = LeRobotDataset("my_dataset")
pipeline = DataProcessorPipeline.from_pretrained(
"model_path", overrides={"normalizer_processor": {"stats": dataset.meta.stats}}
)
# dataset.meta.stats will be used, not the stats from the saved model
# Custom stats override
custom_stats = {"action": {"mean": [0.0], "std": [1.0]}}
pipeline = DataProcessorPipeline.from_pretrained(
"model_path", overrides={"normalizer_processor": {"stats": custom_stats}}
)
```
Attributes:
features: A dictionary mapping feature names to `PolicyFeature` objects, defining
the data structure to be processed.
norm_map: A dictionary mapping `FeatureType` to `NormalizationMode`, specifying
which normalization method to use for each type of feature.
stats: A dictionary containing the normalization statistics (e.g., mean, std,
min, max) for each feature.
device: The PyTorch device on which to store and perform tensor operations.
eps: A small epsilon value to prevent division by zero in normalization
calculations.
normalize_observation_keys: An optional set of keys to selectively apply
normalization to specific observation features.
_tensor_stats: An internal dictionary holding the normalization statistics as
PyTorch tensors.
_stats_explicitly_provided: Internal flag tracking whether stats were explicitly
provided during construction (used for override preservation).
"""
features: dict[str, PolicyFeature]
norm_map: dict[FeatureType, NormalizationMode]
stats: dict[str, dict[str, Any]] | None = None
device: torch.device | str | None = None
dtype: torch.dtype | None = None
eps: float = 1e-8
normalize_observation_keys: set[str] | None = None
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
_stats_explicitly_provided: bool = field(default=False, init=False, repr=False)
def __post_init__(self):
"""
Initializes the mixin after dataclass construction.
This method handles the robust deserialization of `features` and `norm_map`
from JSON-compatible formats (where enums become strings and tuples become
lists) and converts the provided `stats` dictionary into a dictionary of
tensors (`_tensor_stats`) on the specified device.
"""
# Track if stats were explicitly provided (not None and not empty)
self._stats_explicitly_provided = self.stats is not None and bool(self.stats)
# Robust JSON deserialization handling (guard empty maps).
if self.features:
first_val = next(iter(self.features.values()))
if isinstance(first_val, dict):
reconstructed = {}
for key, ft_dict in self.features.items():
reconstructed[key] = PolicyFeature(
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
)
self.features = reconstructed
if self.norm_map:
# if keys are strings (JSON), rebuild enum map
if all(isinstance(k, str) for k in self.norm_map.keys()):
reconstructed = {}
for ft_type_str, norm_mode_str in self.norm_map.items():
reconstructed[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
self.norm_map = reconstructed
# Convert stats to tensors and move to the target device once during initialization.
self.stats = self.stats or {}
if self.dtype is None:
self.dtype = torch.float32
self._tensor_stats = to_tensor(self.stats, device=self.device, dtype=self.dtype)
def to(
self, device: torch.device | str | None = None, dtype: torch.dtype | None = None
) -> _NormalizationMixin:
"""
Moves the processor's normalization stats to the specified device.
Args:
device: The target PyTorch device.
Returns:
The instance of the class, allowing for method chaining.
"""
if device is not None:
self.device = device
if dtype is not None:
self.dtype = dtype
self._tensor_stats = to_tensor(self.stats, device=self.device, dtype=self.dtype)
return self
def state_dict(self) -> dict[str, Tensor]:
"""
Returns the normalization statistics as a flat state dictionary.
All tensors are moved to the CPU before being returned, which is standard practice
for saving state dictionaries.
Returns:
A flat dictionary mapping from `'feature_name.stat_name'` to the
corresponding statistics tensor on the CPU.
"""
flat: dict[str, Tensor] = {}
for key, sub in self._tensor_stats.items():
for stat_name, tensor in sub.items():
flat[f"{key}.{stat_name}"] = tensor.cpu() # Always save to CPU
return flat
def load_state_dict(self, state: dict[str, Tensor]) -> None:
"""
Loads normalization statistics from a state dictionary.
The loaded tensors are moved to the processor's configured device.
**Stats Override Preservation:**
If stats were explicitly provided during construction (e.g., via overrides in
`DataProcessorPipeline.from_pretrained()`), they are preserved and the state
dictionary is ignored. This allows users to override normalization statistics
while still loading the rest of the model state.
This behavior is crucial for scenarios where users want to adapt a pretrained
model to a new dataset with different statistics without retraining the entire
model.
Args:
state: A flat state dictionary with keys in the format
`'feature_name.stat_name'`.
Note:
When stats are preserved due to explicit provision, only the tensor
representation is updated to ensure consistency with the current device
and dtype settings.
"""
# If stats were explicitly provided during construction, preserve them
if self._stats_explicitly_provided and self.stats is not None:
# Don't load from state_dict, keep the explicitly provided stats
# But ensure _tensor_stats is properly initialized
self._tensor_stats = to_tensor(self.stats, device=self.device, dtype=self.dtype) # type: ignore[assignment]
return
# Normal behavior: load stats from state_dict
self._tensor_stats.clear()
for flat_key, tensor in state.items():
key, stat_name = flat_key.rsplit(".", 1)
# Load to the processor's configured device.
self._tensor_stats.setdefault(key, {})[stat_name] = tensor.to(
dtype=torch.float32, device=self.device
)
# Reconstruct the original stats dict from tensor stats for compatibility with to() method
# and other functions that rely on self.stats
self.stats = {}
for key, tensor_dict in self._tensor_stats.items():
self.stats[key] = {}
for stat_name, tensor in tensor_dict.items():
# Convert tensor back to python/numpy format
self.stats[key][stat_name] = from_tensor_to_numpy(tensor)
def get_config(self) -> dict[str, Any]:
"""
Returns a serializable dictionary of the processor's configuration.
This method is used when saving the processor to disk, ensuring that its
configuration can be reconstructed later.
Returns:
A JSON-serializable dictionary containing the configuration.
"""
config = {
"eps": self.eps,
"features": {
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
},
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
}
if self.normalize_observation_keys is not None:
config["normalize_observation_keys"] = sorted(self.normalize_observation_keys)
return config
def _normalize_observation(self, observation: dict[str, Any], inverse: bool) -> dict[str, Tensor]:
"""
Applies (un)normalization to all relevant features in an observation dictionary.
Args:
observation: The observation dictionary to process.
inverse: If `True`, applies unnormalization; otherwise, applies normalization.
Returns:
A new observation dictionary with the transformed tensor values.
"""
new_observation = dict(observation)
for key, feature in self.features.items():
if self.normalize_observation_keys is not None and key not in self.normalize_observation_keys:
continue
if feature.type != FeatureType.ACTION and key in new_observation:
# Convert to tensor but preserve original dtype for adaptation logic
tensor = torch.as_tensor(new_observation[key])
new_observation[key] = self._apply_transform(tensor, key, feature.type, inverse=inverse)
return new_observation
def _normalize_action(self, action: Tensor, inverse: bool) -> Tensor:
# Convert to tensor but preserve original dtype for adaptation logic
"""
Applies (un)normalization to an action tensor.
Args:
action: The action tensor to process.
inverse: If `True`, applies unnormalization; otherwise, applies normalization.
Returns:
The transformed action tensor.
"""
processed_action = self._apply_transform(action, "action", FeatureType.ACTION, inverse=inverse)
return processed_action
def _apply_transform(
self, tensor: Tensor, key: str, feature_type: FeatureType, *, inverse: bool = False
) -> Tensor:
"""
Core logic to apply a normalization or unnormalization transformation to a tensor.
This method selects the appropriate normalization mode (e.g., mean/std, min/max)
based on the feature type and applies the corresponding mathematical operation.
Args:
tensor: The input tensor to transform.
key: The feature key corresponding to the tensor.
feature_type: The `FeatureType` of the tensor.
inverse: If `True`, applies the inverse transformation (unnormalization).
Returns:
The transformed tensor.
Raises:
ValueError: If an unsupported normalization mode is encountered.
"""
norm_mode = self.norm_map.get(feature_type, NormalizationMode.IDENTITY)
if norm_mode == NormalizationMode.IDENTITY or key not in self._tensor_stats:
return tensor
if norm_mode not in (NormalizationMode.MEAN_STD, NormalizationMode.MIN_MAX):
raise ValueError(f"Unsupported normalization mode: {norm_mode}")
# For Accelerate compatibility: Ensure stats are on the same device and dtype as the input tensor
if self._tensor_stats and key in self._tensor_stats:
first_stat = next(iter(self._tensor_stats[key].values()))
if first_stat.device != tensor.device or first_stat.dtype != tensor.dtype:
self.to(device=tensor.device, dtype=tensor.dtype)
stats = self._tensor_stats[key]
if norm_mode == NormalizationMode.MEAN_STD and "mean" in stats and "std" in stats:
mean, std = stats["mean"], stats["std"]
# Avoid division by zero by adding a small epsilon.
denom = std + self.eps
if inverse:
return tensor * std + mean
return (tensor - mean) / denom
if norm_mode == NormalizationMode.MIN_MAX and "min" in stats and "max" in stats:
min_val, max_val = stats["min"], stats["max"]
denom = max_val - min_val
# When min_val == max_val, substitute the denominator with a small epsilon
# to prevent division by zero. This consistently maps an input equal to
# min_val to -1, ensuring a stable transformation.
denom = torch.where(
denom == 0, torch.tensor(self.eps, device=tensor.device, dtype=tensor.dtype), denom
)
if inverse:
# Map from [-1, 1] back to [min, max]
return (tensor + 1) / 2 * denom + min_val
# Map from [min, max] to [-1, 1]
return 2 * (tensor - min_val) / denom - 1
# If necessary stats are missing, return input unchanged.
return tensor
@dataclass
@ProcessorStepRegistry.register(name="normalizer_processor")
class NormalizerProcessor:
"""Normalizes observations and actions in a single processor step.
This processor handles normalization of both observation and action tensors
using either mean/std normalization or min/max scaling to a [-1, 1] range.
For each tensor key in the stats dictionary, the processor will:
- Use mean/std normalization if those statistics are provided: (x - mean) / std
- Use min/max scaling if those statistics are provided: 2 * (x - min) / (max - min) - 1
The processor can be configured to normalize only specific keys by setting
the normalize_keys parameter.
class NormalizerProcessorStep(_NormalizationMixin, ProcessorStep):
"""
A processor step that applies normalization to observations and actions in a transition.
# Features and normalisation map are mandatory to match the design of normalize.py
features: dict[str, PolicyFeature]
norm_map: dict[FeatureType, NormalizationMode]
# Pre-computed statistics coming from dataset.meta.stats for instance.
stats: dict[str, dict[str, Any]] | None = None
# Explicit subset of keys to normalise. If ``None`` every key (except
# "action") found in ``stats`` will be normalised. Using a ``set`` makes
# membership checks O(1).
normalize_keys: set[str] | None = None
eps: float = 1e-8
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
This class uses the logic from `_NormalizationMixin` to perform forward normalization
(e.g., scaling data to have zero mean and unit variance, or to the range [-1, 1]).
It is typically used in the pre-processing pipeline before feeding data to a policy.
"""
@classmethod
def from_lerobot_dataset(
@@ -70,158 +356,73 @@ class NormalizerProcessor:
features: dict[str, PolicyFeature],
norm_map: dict[FeatureType, NormalizationMode],
*,
normalize_keys: set[str] | None = None,
normalize_observation_keys: set[str] | None = None,
eps: float = 1e-8,
) -> NormalizerProcessor:
"""Factory helper that pulls statistics from a :class:`LeRobotDataset`.
The features and norm_map parameters are mandatory to match the design
pattern used in normalize.py.
device: torch.device | str | None = None,
) -> NormalizerProcessorStep:
"""
Creates a `NormalizerProcessorStep` instance using statistics from a `LeRobotDataset`.
Args:
dataset: The dataset from which to extract normalization statistics.
features: The feature definition for the processor.
norm_map: The mapping from feature types to normalization modes.
normalize_observation_keys: An optional set of observation keys to normalize.
eps: A small epsilon value for numerical stability.
device: The target device for the processor.
Returns:
A new instance of `NormalizerProcessorStep`.
"""
return cls(
features=features,
norm_map=norm_map,
stats=dataset.meta.stats,
normalize_keys=normalize_keys,
normalize_observation_keys=normalize_observation_keys,
eps=eps,
device=device,
)
def __post_init__(self):
# Handle deserialization from JSON config
if self.features and isinstance(list(self.features.values())[0], dict):
# Features came from JSON - need to reconstruct PolicyFeature objects
reconstructed_features = {}
for key, ft_dict in self.features.items():
reconstructed_features[key] = PolicyFeature(
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
)
self.features = reconstructed_features
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
# norm_map came from JSON - need to reconstruct enum keys and values
reconstructed_norm_map = {}
for ft_type_str, norm_mode_str in self.norm_map.items():
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
self.norm_map = reconstructed_norm_map
# Convert statistics once so we avoid repeated numpy→Tensor conversions
# during runtime.
self.stats = self.stats or {}
self._tensor_stats = _convert_stats_to_tensors(self.stats)
# Ensure *normalize_keys* is a set for fast look-ups and compare by
# value later when returning the configuration.
if self.normalize_keys is not None and not isinstance(self.normalize_keys, set):
self.normalize_keys = set(self.normalize_keys)
def _normalize_obs(self, observation):
if observation is None:
return None
# Decide which keys should be normalised for this call.
if self.normalize_keys is not None:
keys_to_norm = self.normalize_keys
else:
# Use feature map to skip action keys.
keys_to_norm = {k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION}
processed = dict(observation)
for key in keys_to_norm:
if key not in processed or key not in self._tensor_stats:
continue
orig_val = processed[key]
tensor = (
orig_val.to(dtype=torch.float32)
if isinstance(orig_val, torch.Tensor)
else torch.as_tensor(orig_val, dtype=torch.float32)
)
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
if "mean" in stats and "std" in stats:
mean, std = stats["mean"], stats["std"]
processed[key] = (tensor - mean) / (std + self.eps)
elif "min" in stats and "max" in stats:
min_val, max_val = stats["min"], stats["max"]
processed[key] = 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
return processed
def _normalize_action(self, action):
if action is None or "action" not in self._tensor_stats:
return action
tensor = (
action.to(dtype=torch.float32)
if isinstance(action, torch.Tensor)
else torch.as_tensor(action, dtype=torch.float32)
)
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
if "mean" in stats and "std" in stats:
mean, std = stats["mean"], stats["std"]
return (tensor - mean) / (std + self.eps)
if "min" in stats and "max" in stats:
min_val, max_val = stats["min"], stats["max"]
return 2 * (tensor - min_val) / (max_val - min_val + self.eps) - 1
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
def __call__(self, transition: EnvTransition) -> EnvTransition:
observation = self._normalize_obs(transition.get(TransitionKey.OBSERVATION))
action = self._normalize_action(transition.get(TransitionKey.ACTION))
# Create a new transition with normalized values
new_transition = transition.copy()
new_transition[TransitionKey.OBSERVATION] = observation
new_transition[TransitionKey.ACTION] = action
# Handle observation normalization.
observation = new_transition.get(TransitionKey.OBSERVATION)
if observation is not None:
new_transition[TransitionKey.OBSERVATION] = self._normalize_observation(
observation, inverse=False
)
# Handle action normalization.
action = new_transition.get(TransitionKey.ACTION)
if action is None:
return new_transition
if not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
new_transition[TransitionKey.ACTION] = self._normalize_action(action, inverse=False)
return new_transition
def get_config(self) -> dict[str, Any]:
config = {
"eps": self.eps,
"features": {
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
},
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
}
if self.normalize_keys is not None:
# Serialise as a list for YAML / JSON friendliness
config["normalize_keys"] = sorted(self.normalize_keys)
return config
def state_dict(self) -> dict[str, Tensor]:
flat = {}
for key, sub in self._tensor_stats.items():
for stat_name, tensor in sub.items():
flat[f"{key}.{stat_name}"] = tensor
return flat
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
self._tensor_stats.clear()
for flat_key, tensor in state.items():
key, stat_name = flat_key.rsplit(".", 1)
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
def reset(self):
pass
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@dataclass
@ProcessorStepRegistry.register(name="unnormalizer_processor")
class UnnormalizerProcessor:
"""Inverse normalisation for observations and actions.
Exactly mirrors :class:`NormalizerProcessor` but applies the inverse
transform.
class UnnormalizerProcessorStep(_NormalizationMixin, ProcessorStep):
"""
A processor step that applies unnormalization to observations and actions.
features: dict[str, PolicyFeature]
norm_map: dict[FeatureType, NormalizationMode]
stats: dict[str, dict[str, Any]] | None = None
_tensor_stats: dict[str, dict[str, Tensor]] = field(default_factory=dict, init=False, repr=False)
This class inverts the normalization process, scaling data back to its original
range. It is typically used in the post-processing pipeline to convert a policy's
normalized action output into a format that can be executed by a robot or
environment.
"""
@classmethod
def from_lerobot_dataset(
@@ -229,103 +430,72 @@ class UnnormalizerProcessor:
dataset: LeRobotDataset,
features: dict[str, PolicyFeature],
norm_map: dict[FeatureType, NormalizationMode],
) -> UnnormalizerProcessor:
return cls(features=features, norm_map=norm_map, stats=dataset.meta.stats)
*,
device: torch.device | str | None = None,
) -> UnnormalizerProcessorStep:
"""
Creates an `UnnormalizerProcessorStep` using statistics from a `LeRobotDataset`.
def __post_init__(self):
# Handle deserialization from JSON config
if self.features and isinstance(list(self.features.values())[0], dict):
# Features came from JSON - need to reconstruct PolicyFeature objects
reconstructed_features = {}
for key, ft_dict in self.features.items():
reconstructed_features[key] = PolicyFeature(
type=FeatureType(ft_dict["type"]), shape=tuple(ft_dict["shape"])
)
self.features = reconstructed_features
Args:
dataset: The dataset from which to extract normalization statistics.
features: The feature definition for the processor.
norm_map: The mapping from feature types to normalization modes.
device: The target device for the processor.
if self.norm_map and isinstance(list(self.norm_map.keys())[0], str):
# norm_map came from JSON - need to reconstruct enum keys and values
reconstructed_norm_map = {}
for ft_type_str, norm_mode_str in self.norm_map.items():
reconstructed_norm_map[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
self.norm_map = reconstructed_norm_map
self.stats = self.stats or {}
self._tensor_stats = _convert_stats_to_tensors(self.stats)
def _unnormalize_obs(self, observation):
if observation is None:
return None
keys = [k for k, ft in self.features.items() if ft.type is not FeatureType.ACTION]
processed = dict(observation)
for key in keys:
if key not in processed or key not in self._tensor_stats:
continue
orig_val = processed[key]
tensor = (
orig_val.to(dtype=torch.float32)
if isinstance(orig_val, torch.Tensor)
else torch.as_tensor(orig_val, dtype=torch.float32)
)
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats[key].items()}
if "mean" in stats and "std" in stats:
mean, std = stats["mean"], stats["std"]
processed[key] = tensor * std + mean
elif "min" in stats and "max" in stats:
min_val, max_val = stats["min"], stats["max"]
processed[key] = (tensor + 1) / 2 * (max_val - min_val) + min_val
return processed
def _unnormalize_action(self, action):
if action is None or "action" not in self._tensor_stats:
return action
tensor = (
action.to(dtype=torch.float32)
if isinstance(action, torch.Tensor)
else torch.as_tensor(action, dtype=torch.float32)
)
stats = {k: v.to(tensor.device) for k, v in self._tensor_stats["action"].items()}
if "mean" in stats and "std" in stats:
mean, std = stats["mean"], stats["std"]
return tensor * std + mean
if "min" in stats and "max" in stats:
min_val, max_val = stats["min"], stats["max"]
return (tensor + 1) / 2 * (max_val - min_val) + min_val
raise ValueError("Action stats must contain either ('mean','std') or ('min','max')")
Returns:
A new instance of `UnnormalizerProcessorStep`.
"""
return cls(features=features, norm_map=norm_map, stats=dataset.meta.stats, device=device)
def __call__(self, transition: EnvTransition) -> EnvTransition:
observation = self._unnormalize_obs(transition.get(TransitionKey.OBSERVATION))
action = self._unnormalize_action(transition.get(TransitionKey.ACTION))
# Create a new transition with unnormalized values
new_transition = transition.copy()
new_transition[TransitionKey.OBSERVATION] = observation
new_transition[TransitionKey.ACTION] = action
# Handle observation unnormalization.
observation = new_transition.get(TransitionKey.OBSERVATION)
if observation is not None:
new_transition[TransitionKey.OBSERVATION] = self._normalize_observation(observation, inverse=True)
# Handle action unnormalization.
action = new_transition.get(TransitionKey.ACTION)
if action is None:
return new_transition
if not isinstance(action, PolicyAction):
raise ValueError(f"Action should be a PolicyAction type got {type(action)}")
new_transition[TransitionKey.ACTION] = self._normalize_action(action, inverse=True)
return new_transition
def get_config(self) -> dict[str, Any]:
return {
"features": {
key: {"type": ft.type.value, "shape": ft.shape} for key, ft in self.features.items()
},
"norm_map": {ft_type.value: norm_mode.value for ft_type, norm_mode in self.norm_map.items()},
}
def state_dict(self) -> dict[str, Tensor]:
flat = {}
for key, sub in self._tensor_stats.items():
for stat_name, tensor in sub.items():
flat[f"{key}.{stat_name}"] = tensor
return flat
def load_state_dict(self, state: Mapping[str, Tensor]) -> None:
self._tensor_stats.clear()
for flat_key, tensor in state.items():
key, stat_name = flat_key.rsplit(".", 1)
self._tensor_stats.setdefault(key, {})[stat_name] = tensor
def reset(self):
pass
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
def hotswap_stats(
policy_processor: PolicyProcessorPipeline, stats: dict[str, dict[str, Any]]
) -> PolicyProcessorPipeline:
"""
Replaces normalization statistics in an existing `PolicyProcessorPipeline` instance.
This function creates a deep copy of the provided pipeline and updates the
statistics of any `NormalizerProcessorStep` or `UnnormalizerProcessorStep` it
contains. This is useful for adapting a trained policy to a new environment or
dataset with different data distributions without having to reconstruct the entire
pipeline.
Args:
policy_processor: The policy processor pipeline to modify.
stats: The new dictionary of normalization statistics to apply.
Returns:
A new `PolicyProcessorPipeline` instance with the updated statistics.
"""
rp = deepcopy(policy_processor)
for step in rp.steps:
if isinstance(step, _NormalizationMixin):
step.stats = stats
# Re-initialize tensor_stats on the correct device.
step._tensor_stats = to_tensor(stats, device=step.device, dtype=step.dtype) # type: ignore[assignment]
return rp

View File

@@ -20,32 +20,54 @@ import numpy as np
import torch
from torch import Tensor
from lerobot.configs.types import PolicyFeature
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from lerobot.constants import OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.processor.pipeline import ObservationProcessor, ProcessorStepRegistry
from .pipeline import ObservationProcessorStep, ProcessorStepRegistry
@dataclass
@ProcessorStepRegistry.register(name="observation_processor")
class VanillaObservationProcessor(ObservationProcessor):
class VanillaObservationProcessorStep(ObservationProcessorStep):
"""
Processes environment observations into the LeRobot format by handling both images and states.
Processes standard Gymnasium observations into the LeRobot format.
Image processing:
- Converts channel-last (H, W, C) images to channel-first (C, H, W)
- Normalizes uint8 images ([0, 255]) to float32 ([0, 1])
- Adds a batch dimension if missing
- Supports single images and image dictionaries
This step handles both image and state data from a typical observation dictionary,
preparing it for use in a LeRobot policy.
State processing:
- Maps 'environment_state' to observation.environment_state
- Maps 'agent_pos' to observation.state
- Converts numpy arrays to tensors
- Adds a batch dimension if missing
**Image Processing:**
- Converts channel-last (H, W, C), `uint8` images to channel-first (C, H, W),
`float32` tensors.
- Normalizes pixel values from the [0, 255] range to [0, 1].
- Adds a batch dimension if one is not already present.
- Recognizes a single image under the key `"pixels"` and maps it to
`"observation.image"`.
- Recognizes a dictionary of images under the key `"pixels"` and maps them
to `"observation.images.{camera_name}"`.
**State Processing:**
- Maps the `"environment_state"` key to `"observation.environment_state"`.
- Maps the `"agent_pos"` key to `"observation.state"`.
- Converts NumPy arrays to PyTorch tensors.
- Adds a batch dimension if one is not already present.
"""
def _process_single_image(self, img: np.ndarray) -> Tensor:
"""Process a single image array."""
"""
Processes a single NumPy image array into a channel-first, normalized tensor.
Args:
img: A NumPy array representing the image, expected to be in channel-last
(H, W, C) format with a `uint8` dtype.
Returns:
A `float32` PyTorch tensor in channel-first (B, C, H, W) format, with
pixel values normalized to the [0, 1] range.
Raises:
ValueError: If the input image does not appear to be in channel-last
format or is not of `uint8` dtype.
"""
# Convert to tensor
img_tensor = torch.from_numpy(img)
@@ -106,19 +128,32 @@ class VanillaObservationProcessor(ObservationProcessor):
def observation(self, observation):
return self._process_observation(observation)
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
"""Transforms feature keys to a standardized contract.
This method handles several renaming patterns:
- Exact matches (e.g., 'pixels' -> 'OBS_IMAGE').
- Prefixed exact matches (e.g., 'observation.pixels' -> 'OBS_IMAGE').
- Prefix matches (e.g., 'pixels.cam1' -> 'OBS_IMAGES.cam1').
- Prefixed prefix matches (e.g., 'observation.pixels.cam1' -> 'OBS_IMAGES.cam1').
- environment_state -> OBS_ENV_STATE,
- agent_pos -> OBS_STATE,
- observation.environment_state -> OBS_ENV_STATE,
- observation.agent_pos -> OBS_STATE
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Transforms feature keys from the Gym standard to the LeRobot standard.
This method standardizes the feature dictionary by renaming keys according
to LeRobot's conventions, ensuring that policies can be constructed correctly.
It handles various raw key formats, including those with an "observation." prefix.
**Renaming Rules:**
- `pixels` or `observation.pixels` -> `observation.image`
- `pixels.{cam}` or `observation.pixels.{cam}` -> `observation.images.{cam}`
- `environment_state` or `observation.environment_state` -> `observation.environment_state`
- `agent_pos` or `observation.agent_pos` -> `observation.state`
Args:
features: The policy features dictionary with Gym-style keys.
Returns:
The policy features dictionary with standardized LeRobot keys.
"""
# Build a new features mapping keyed by the same FeatureType buckets
# We assume callers already placed features in the correct FeatureType.
new_features: dict[PipelineFeatureType, dict[str, PolicyFeature]] = {ft: {} for ft in features.keys()}
exact_pairs = {
"pixels": OBS_IMAGE,
"environment_state": OBS_ENV_STATE,
@@ -129,29 +164,43 @@ class VanillaObservationProcessor(ObservationProcessor):
"pixels.": f"{OBS_IMAGES}.",
}
for key in list(features.keys()):
matched_prefix = False
for old_prefix, new_prefix in prefix_pairs.items():
prefixed_old = f"observation.{old_prefix}"
if key.startswith(prefixed_old):
suffix = key[len(prefixed_old) :]
features[f"{new_prefix}{suffix}"] = features.pop(key)
matched_prefix = True
break
# Iterate over all incoming feature buckets and normalize/move each entry
for src_ft, bucket in features.items():
for key, feat in list(bucket.items()):
handled = False
if key.startswith(old_prefix):
suffix = key[len(old_prefix) :]
features[f"{new_prefix}{suffix}"] = features.pop(key)
matched_prefix = True
break
if matched_prefix:
continue
for old, new in exact_pairs.items():
if key == old or key == f"observation.{old}":
if key in features:
features[new] = features.pop(key)
# Prefix-based rules (e.g. pixels.cam1 -> OBS_IMAGES.cam1)
for old_prefix, new_prefix in prefix_pairs.items():
prefixed_old = f"observation.{old_prefix}"
if key.startswith(prefixed_old):
suffix = key[len(prefixed_old) :]
new_key = f"{new_prefix}{suffix}"
new_features[src_ft][new_key] = feat
handled = True
break
return features
if key.startswith(old_prefix):
suffix = key[len(old_prefix) :]
new_key = f"{new_prefix}{suffix}"
new_features[src_ft][new_key] = feat
handled = True
break
if handled:
continue
# Exact-name rules (pixels, environment_state, agent_pos)
for old, new in exact_pairs.items():
if key == old or key == f"observation.{old}":
new_key = new
new_features[src_ft][new_key] = feat
handled = True
break
if handled:
continue
# Default: keep key in the same source FeatureType bucket
new_features[src_ft][key] = feat
return new_features

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,52 @@
from dataclasses import asdict, dataclass
from typing import Any
import torch
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
from lerobot.processor import ActionProcessorStep, PolicyAction, ProcessorStepRegistry, RobotAction
@dataclass
@ProcessorStepRegistry.register("robot_action_to_policy_action_processor")
class RobotActionToPolicyActionProcessorStep(ActionProcessorStep):
"""Processor step to map a dictionary to a tensor action."""
motor_names: list[str]
def action(self, action: RobotAction) -> PolicyAction:
if len(self.motor_names) != len(action):
raise ValueError(f"Action must have {len(self.motor_names)} elements, got {len(action)}")
return torch.tensor([action[f"{name}.pos"] for name in self.motor_names])
def get_config(self) -> dict[str, Any]:
return asdict(self)
def transform_features(self, features):
features[PipelineFeatureType.ACTION]["action"] = PolicyFeature(
type=FeatureType.ACTION, shape=(len(self.motor_names),)
)
return features
@dataclass
@ProcessorStepRegistry.register("policy_action_to_robot_action_processor")
class PolicyActionToRobotActionProcessorStep(ActionProcessorStep):
"""Processor step to map a policy action to a robot action."""
motor_names: list[str]
def action(self, action: PolicyAction) -> RobotAction:
if len(self.motor_names) != len(action):
raise ValueError(f"Action must have {len(self.motor_names)} elements, got {len(action)}")
return {f"{name}.pos": action[i] for i, name in enumerate(self.motor_names)}
def get_config(self) -> dict[str, Any]:
return asdict(self)
def transform_features(self, features):
for name in self.motor_names:
features[PipelineFeatureType.ACTION][f"{name}.pos"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features

View File

@@ -13,20 +13,30 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from dataclasses import dataclass, field
from typing import Any
from lerobot.configs.types import PolicyFeature
from lerobot.processor.pipeline import (
ObservationProcessor,
ProcessorStepRegistry,
)
from lerobot.configs.types import PipelineFeatureType, PolicyFeature
from .pipeline import ObservationProcessorStep, ProcessorStepRegistry
@dataclass
@ProcessorStepRegistry.register(name="rename_processor")
class RenameProcessor(ObservationProcessor):
"""Rename processor that renames keys in the observation."""
@ProcessorStepRegistry.register(name="rename_observations_processor")
class RenameObservationsProcessorStep(ObservationProcessorStep):
"""
A processor step that renames keys in an observation dictionary.
This step is useful for creating a standardized data interface by mapping keys
from an environment's format to the format expected by a LeRobot policy or
other downstream components.
Attributes:
rename_map: A dictionary mapping from old key names to new key names.
Keys present in an observation that are not in this map will
be kept with their original names.
"""
rename_map: dict[str, str] = field(default_factory=dict)
@@ -43,9 +53,41 @@ class RenameProcessor(ObservationProcessor):
def get_config(self) -> dict[str, Any]:
return {"rename_map": self.rename_map}
def feature_contract(self, features: dict[str, PolicyFeature]) -> dict[str, PolicyFeature]:
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""Transforms:
- Each key in the observation that appears in `rename_map` is renamed to its value.
- Keys not in `rename_map` remain unchanged.
"""
return {self.rename_map.get(k, k): v for k, v in features.items()}
new_features: dict[PipelineFeatureType, dict[str, PolicyFeature]] = features.copy()
new_features[PipelineFeatureType.OBSERVATION] = {
self.rename_map.get(k, k): v for k, v in features[PipelineFeatureType.OBSERVATION].items()
}
return new_features
def rename_stats(stats: dict[str, dict[str, Any]], rename_map: dict[str, str]) -> dict[str, dict[str, Any]]:
"""
Renames the top-level keys in a statistics dictionary using a provided mapping.
This is a helper function typically used to keep normalization statistics
consistent with renamed observation or action features. It performs a defensive
deep copy to avoid modifying the original `stats` dictionary.
Args:
stats: A nested dictionary of statistics, where top-level keys are
feature names (e.g., `{"observation.state": {"mean": 0.5}}`).
rename_map: A dictionary mapping old feature names to new feature names.
Returns:
A new statistics dictionary with its top-level keys renamed. Returns an
empty dictionary if the input `stats` is empty.
"""
if not stats:
return {}
renamed: dict[str, dict[str, Any]] = {}
for old_key, sub_stats in stats.items():
new_key = rename_map.get(old_key, old_key)
renamed[new_key] = deepcopy(sub_stats) if sub_stats is not None else {}
return renamed

View File

@@ -0,0 +1,270 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script defines a processor for tokenizing natural language instructions from an environment transition.
It uses a tokenizer from the Hugging Face `transformers` library to convert task descriptions (text) into
token IDs and attention masks, which are then added to the observation dictionary.
"""
from __future__ import annotations
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any
import torch
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
from lerobot.constants import OBS_LANGUAGE_ATTENTION_MASK, OBS_LANGUAGE_TOKENS
from lerobot.utils.import_utils import _transformers_available
from .core import EnvTransition, TransitionKey
from .pipeline import ObservationProcessorStep, ProcessorStepRegistry
# Conditional import for type checking and lazy loading
if TYPE_CHECKING or _transformers_available:
from transformers import AutoTokenizer
else:
AutoTokenizer = None
@dataclass
@ProcessorStepRegistry.register(name="tokenizer_processor")
class TokenizerProcessorStep(ObservationProcessorStep):
"""
Processor step to tokenize a natural language task description.
This step extracts a task string from the `complementary_data` of an `EnvTransition`,
tokenizes it using a Hugging Face `transformers` tokenizer, and adds the resulting
token IDs and attention mask to the `observation` dictionary.
Requires the `transformers` library to be installed.
Attributes:
tokenizer_name: The name of a pretrained tokenizer from the Hugging Face Hub (e.g., "bert-base-uncased").
tokenizer: A pre-initialized tokenizer object. If provided, `tokenizer_name` is ignored.
max_length: The maximum length to pad or truncate sequences to.
task_key: The key in `complementary_data` where the task string is stored.
padding_side: The side to pad on ('left' or 'right').
padding: The padding strategy ('max_length', 'longest', etc.).
truncation: Whether to truncate sequences longer than `max_length`.
input_tokenizer: The internal tokenizer instance, loaded during initialization.
"""
tokenizer_name: str | None = None
tokenizer: Any | None = None # Use `Any` for compatibility without a hard dependency
max_length: int = 512
task_key: str = "task"
padding_side: str = "right"
padding: str = "max_length"
truncation: bool = True
# Internal tokenizer instance (not part of the config)
input_tokenizer: Any = field(default=None, init=False, repr=False)
def __post_init__(self):
"""
Initializes the tokenizer after the dataclass is created.
It checks for the availability of the `transformers` library and loads the tokenizer
either from a provided object or by name from the Hugging Face Hub.
Raises:
ImportError: If the `transformers` library is not installed.
ValueError: If neither `tokenizer` nor `tokenizer_name` is provided.
"""
if not _transformers_available:
raise ImportError(
"The 'transformers' library is not installed. "
"Please install it with `pip install 'lerobot[transformers-dep]'` to use TokenizerProcessorStep."
)
if self.tokenizer is not None:
# Use provided tokenizer object directly
self.input_tokenizer = self.tokenizer
elif self.tokenizer_name is not None:
if AutoTokenizer is None:
raise ImportError("AutoTokenizer is not available")
self.input_tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name)
else:
raise ValueError(
"Either 'tokenizer' or 'tokenizer_name' must be provided. "
"Pass a tokenizer object directly or a tokenizer name to auto-load."
)
def get_task(self, transition: EnvTransition) -> list[str] | None:
"""
Extracts the task description(s) from the transition's complementary data.
Args:
transition: The environment transition.
Returns:
A list of task strings, or None if the task key is not found or the value is None.
"""
complementary_data = transition.get(TransitionKey.COMPLEMENTARY_DATA)
if complementary_data is None:
raise ValueError("Complementary data is None so no task can be extracted from it")
task = complementary_data[self.task_key]
if task is None:
raise ValueError("Task extracted from Complementary data is None")
# Standardize to a list of strings for the tokenizer
if isinstance(task, str):
return [task]
elif isinstance(task, list) and all(isinstance(t, str) for t in task):
return task
return None
def observation(self, observation: dict[str, Any]) -> dict[str, Any]:
"""
Tokenizes the task description and adds it to the observation dictionary.
This method retrieves the task, tokenizes it, moves the resulting tensors to the
same device as other data in the transition, and updates the observation.
Args:
observation: The original observation dictionary.
Returns:
The updated observation dictionary including token IDs and an attention mask.
"""
task = self.get_task(self.transition)
if task is None:
raise ValueError("Task cannot be None")
# Tokenize the task (this will create CPU tensors)
tokenized_prompt = self._tokenize_text(task)
# Detect the device from existing tensors in the transition to ensure consistency
target_device = self._detect_device(self.transition)
# Move new tokenized tensors to the detected device
if target_device is not None:
tokenized_prompt = {
k: v.to(target_device) if isinstance(v, torch.Tensor) else v
for k, v in tokenized_prompt.items()
}
# Create a new observation dict to avoid modifying the original in place
new_observation = dict(observation)
# Add tokenized data to the observation
new_observation[OBS_LANGUAGE_TOKENS] = tokenized_prompt["input_ids"]
new_observation[OBS_LANGUAGE_ATTENTION_MASK] = tokenized_prompt["attention_mask"].to(dtype=torch.bool)
return new_observation
def _detect_device(self, transition: EnvTransition) -> torch.device | None:
"""
Detects the torch.device from existing tensors in the transition.
It checks tensors in the observation dictionary first, then the action tensor.
Args:
transition: The environment transition.
Returns:
The detected `torch.device`, or None if no tensors are found.
"""
# Check observation tensors first (most likely place to find tensors)
observation = transition.get(TransitionKey.OBSERVATION)
if observation:
for value in observation.values():
if isinstance(value, torch.Tensor):
return value.device
# Fallback to checking the action tensor
action = transition.get(TransitionKey.ACTION)
if isinstance(action, torch.Tensor):
return action.device
return None # No tensors found, default will be CPU
def _tokenize_text(self, text: str | list[str]) -> dict[str, torch.Tensor]:
"""
A wrapper around the tokenizer call.
Args:
text: A string or list of strings to tokenize.
Returns:
A dictionary containing tokenized 'input_ids' and 'attention_mask' as PyTorch tensors.
"""
return self.input_tokenizer(
text,
max_length=self.max_length,
truncation=self.truncation,
padding=self.padding,
padding_side=self.padding_side,
return_tensors="pt",
)
def get_config(self) -> dict[str, Any]:
"""
Returns the serializable configuration of the processor.
Note: The tokenizer object itself is not serialized. If the processor was initialized
with a tokenizer name, that name will be included in the config.
Returns:
A dictionary with the processor's configuration parameters.
"""
config = {
"max_length": self.max_length,
"task_key": self.task_key,
"padding_side": self.padding_side,
"padding": self.padding,
"truncation": self.truncation,
}
# Only save tokenizer_name if it was used to create the tokenizer
if self.tokenizer_name is not None and self.tokenizer is None:
config["tokenizer_name"] = self.tokenizer_name
return config
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
"""
Adds feature definitions for the language tokens and attention mask.
This updates the policy features dictionary to include the new data added to the
observation, ensuring downstream components are aware of their shape and type.
Args:
features: The dictionary of existing policy features.
Returns:
The updated dictionary of policy features.
"""
# Add a feature for the token IDs if it doesn't already exist
if OBS_LANGUAGE_TOKENS not in features[PipelineFeatureType.OBSERVATION]:
features[PipelineFeatureType.OBSERVATION][OBS_LANGUAGE_TOKENS] = PolicyFeature(
type=FeatureType.LANGUAGE, shape=(self.max_length,)
)
# Add a feature for the attention mask if it doesn't already exist
if OBS_LANGUAGE_ATTENTION_MASK not in features[PipelineFeatureType.OBSERVATION]:
features[PipelineFeatureType.OBSERVATION][OBS_LANGUAGE_ATTENTION_MASK] = PolicyFeature(
type=FeatureType.LANGUAGE, shape=(self.max_length,)
)
return features

View File

@@ -21,11 +21,12 @@ Example:
lerobot-record \
--robot.type=so100_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.cameras="{laptop: {type: opencv, camera_index: 0, width: 640, height: 480}}" \
--robot.cameras="{laptop: {type: opencv, index_or_path: 0, width: 640, height: 480, fps: 30}}" \
--robot.id=black \
--dataset.repo_id=aliberts/record-test \
--dataset.repo_id=<my_username>/<my_dataset_name> \
--dataset.num_episodes=2 \
--dataset.single_task="Grab the cube" \
--display_data=true
# <- Teleop optional if you want to teleoperate to record or in between episodes with a policy \
# --teleop.type=so100_leader \
# --teleop.port=/dev/tty.usbmodem58760431551 \
@@ -59,9 +60,10 @@ lerobot-record \
import logging
import time
from dataclasses import asdict, dataclass
from dataclasses import asdict, dataclass, field
from pathlib import Path
from pprint import pformat
from typing import Any
from lerobot.cameras import ( # noqa: F401
CameraConfig, # noqa: F401
@@ -72,10 +74,20 @@ from lerobot.configs import parser
from lerobot.configs.policies import PreTrainedConfig
from lerobot.datasets.image_writer import safe_stop_image_writer
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.datasets.utils import build_dataset_frame, hw_to_dataset_features
from lerobot.datasets.pipeline_features import aggregate_pipeline_dataset_features, create_initial_features
from lerobot.datasets.utils import build_dataset_frame, combine_feature_dicts
from lerobot.datasets.video_utils import VideoEncodingManager
from lerobot.policies.factory import make_policy
from lerobot.policies.factory import make_policy, make_pre_post_processors
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.processor import (
PolicyAction,
PolicyProcessorPipeline,
RobotAction,
RobotObservation,
RobotProcessorPipeline,
make_default_processors,
)
from lerobot.processor.rename_processor import rename_stats
from lerobot.robots import ( # noqa: F401
Robot,
RobotConfig,
@@ -149,6 +161,8 @@ class DatasetRecordConfig:
# Number of episodes to record before batch encoding videos
# Set to 1 for immediate encoding (default behavior), or higher for batched encoding
video_encoding_batch_size: int = 1
# Rename map for the observation to override the image and state keys
rename_map: dict[str, str] = field(default_factory=dict)
def __post_init__(self):
if self.single_task is None:
@@ -187,14 +201,55 @@ class RecordConfig:
return ["policy"]
""" --------------- record_loop() data flow --------------------------
[ Robot ]
V
[ robot.get_observation() ] ---> raw_obs
V
[ robot_observation_processor ] ---> processed_obs
V
.-----( ACTION LOGIC )------------------.
V V
[ From Teleoperator ] [ From Policy ]
| |
| [teleop.get_action] -> raw_action | [predict_action]
| | | |
| V | V
| [teleop_action_processor] | |
| | | |
'---> processed_teleop_action '---> processed_policy_action
| |
'-------------------------.-------------'
V
[ robot_action_processor ] --> robot_action_to_send
V
[ robot.send_action() ] -- (Robot Executes)
V
( Save to Dataset )
V
( Rerun Log / Loop Wait )
"""
@safe_stop_image_writer
def record_loop(
robot: Robot,
events: dict,
fps: int,
teleop_action_processor: RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
], # runs after teleop
robot_action_processor: RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
], # runs before robot
robot_observation_processor: RobotProcessorPipeline[
RobotObservation, RobotObservation
], # runs after robot
dataset: LeRobotDataset | None = None,
teleop: Teleoperator | list[Teleoperator] | None = None,
policy: PreTrainedPolicy | None = None,
preprocessor: PolicyProcessorPipeline[dict[str, Any], dict[str, Any]] | None = None,
postprocessor: PolicyProcessorPipeline[PolicyAction, PolicyAction] | None = None,
control_time_s: int | None = None,
single_task: str | None = None,
display_data: bool = False,
@@ -226,9 +281,11 @@ def record_loop(
"For multi-teleop, the list must contain exactly one KeyboardTeleop and one arm teleoperator. Currently only supported for LeKiwi robot."
)
# if policy is given it needs cleaning up
if policy is not None:
# Reset policy and processor if they are provided
if policy is not None and preprocessor is not None and postprocessor is not None:
policy.reset()
preprocessor.reset()
postprocessor.reset()
timestamp = 0
start_episode_t = time.perf_counter()
@@ -239,32 +296,46 @@ def record_loop(
events["exit_early"] = False
break
observation = robot.get_observation()
# Get robot observation
obs = robot.get_observation()
# Applies a pipeline to the raw robot observation, default is IdentityProcessor
obs_processed = robot_observation_processor(obs)
if policy is not None or dataset is not None:
observation_frame = build_dataset_frame(dataset.features, observation, prefix="observation")
observation_frame = build_dataset_frame(dataset.features, obs_processed, prefix="observation")
if policy is not None:
# Get action from either policy or teleop
if policy is not None and preprocessor is not None and postprocessor is not None:
action_values = predict_action(
observation_frame,
policy,
get_safe_torch_device(policy.config.device),
policy.config.use_amp,
observation=observation_frame,
policy=policy,
device=get_safe_torch_device(policy.config.device),
preprocessor=preprocessor,
postprocessor=postprocessor,
use_amp=policy.config.use_amp,
task=single_task,
robot_type=robot.robot_type,
)
action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)}
action_names = dataset.features["action"]["names"]
act_processed_policy: RobotAction = {
f"{name}": float(action_values[i]) for i, name in enumerate(action_names)
}
elif policy is None and isinstance(teleop, Teleoperator):
action = teleop.get_action()
act = teleop.get_action()
# Applies a pipeline to the raw teleop action, default is IdentityProcessor
act_processed_teleop = teleop_action_processor((act, obs))
elif policy is None and isinstance(teleop, list):
# TODO(pepijn, steven): clean the record loop for use of multiple robots (possibly with pipeline)
arm_action = teleop_arm.get_action()
arm_action = {f"arm_{k}": v for k, v in arm_action.items()}
keyboard_action = teleop_keyboard.get_action()
base_action = robot._from_keyboard_to_base_action(keyboard_action)
action = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
act = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
act_processed_teleop = teleop_action_processor((act, obs))
else:
logging.info(
"No policy or teleoperator provided, skipping action generation."
@@ -273,17 +344,28 @@ def record_loop(
)
continue
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
sent_action = robot.send_action(action)
# Applies a pipeline to the action, default is IdentityProcessor
if policy is not None and act_processed_policy is not None:
action_values = act_processed_policy
robot_action_to_send = robot_action_processor((act_processed_policy, obs))
else:
action_values = act_processed_teleop
robot_action_to_send = robot_action_processor((act_processed_teleop, obs))
# Send action to robot
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset. action = postprocessor.process(action)
# TODO(steven, pepijn, adil): we should use a pipeline step to clip the action, so the sent action is the action that we input to the robot.
_sent_action = robot.send_action(robot_action_to_send)
# Write to dataset
if dataset is not None:
action_frame = build_dataset_frame(dataset.features, sent_action, prefix="action")
action_frame = build_dataset_frame(dataset.features, action_values, prefix="action")
frame = {**observation_frame, **action_frame, "task": single_task}
dataset.add_frame(frame)
if display_data:
log_rerun_data(observation, action)
log_rerun_data(observation=obs_processed, action=action_values)
dt_s = time.perf_counter() - start_loop_t
busy_wait(1 / fps - dt_s)
@@ -301,9 +383,22 @@ def record(cfg: RecordConfig) -> LeRobotDataset:
robot = make_robot_from_config(cfg.robot)
teleop = make_teleoperator_from_config(cfg.teleop) if cfg.teleop is not None else None
action_features = hw_to_dataset_features(robot.action_features, "action", cfg.dataset.video)
obs_features = hw_to_dataset_features(robot.observation_features, "observation", cfg.dataset.video)
dataset_features = {**action_features, **obs_features}
teleop_action_processor, robot_action_processor, robot_observation_processor = make_default_processors()
dataset_features = combine_feature_dicts(
aggregate_pipeline_dataset_features(
pipeline=teleop_action_processor,
initial_features=create_initial_features(
action=robot.action_features
), # TODO(steven, pepijn): in future this should be come from teleop or policy
use_videos=cfg.dataset.video,
),
aggregate_pipeline_dataset_features(
pipeline=robot_observation_processor,
initial_features=create_initial_features(observation=robot.observation_features),
use_videos=cfg.dataset.video,
),
)
if cfg.resume:
dataset = LeRobotDataset(
@@ -335,6 +430,18 @@ def record(cfg: RecordConfig) -> LeRobotDataset:
# Load pretrained policy
policy = None if cfg.policy is None else make_policy(cfg.policy, ds_meta=dataset.meta)
preprocessor = None
postprocessor = None
if cfg.policy is not None:
preprocessor, postprocessor = make_pre_post_processors(
policy_cfg=cfg.policy,
pretrained_path=cfg.policy.pretrained_path,
dataset_stats=rename_stats(dataset.meta.stats, cfg.dataset.rename_map),
preprocessor_overrides={
"device_processor": {"device": cfg.policy.device},
"rename_observations_processor": {"rename_map": cfg.dataset.rename_map},
},
)
robot.connect()
if teleop is not None:
@@ -350,8 +457,13 @@ def record(cfg: RecordConfig) -> LeRobotDataset:
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop_action_processor=teleop_action_processor,
robot_action_processor=robot_action_processor,
robot_observation_processor=robot_observation_processor,
teleop=teleop,
policy=policy,
preprocessor=preprocessor,
postprocessor=postprocessor,
dataset=dataset,
control_time_s=cfg.dataset.episode_time_s,
single_task=cfg.dataset.single_task,
@@ -368,6 +480,9 @@ def record(cfg: RecordConfig) -> LeRobotDataset:
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop_action_processor=teleop_action_processor,
robot_action_processor=robot_action_processor,
robot_observation_processor=robot_observation_processor,
teleop=teleop,
control_time_s=cfg.dataset.reset_time_s,
single_task=cfg.dataset.single_task,

View File

@@ -23,7 +23,7 @@ lerobot-replay \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.id=black \
--dataset.repo_id=aliberts/record-test \
--dataset.episode=2
--dataset.episode=0
```
Example replay with bimanual so100:
@@ -45,9 +45,11 @@ from dataclasses import asdict, dataclass
from pathlib import Path
from pprint import pformat
import draccus
from lerobot.configs import parser
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.processor import (
make_default_robot_action_processor,
)
from lerobot.robots import ( # noqa: F401
Robot,
RobotConfig,
@@ -55,7 +57,6 @@ from lerobot.robots import ( # noqa: F401
hope_jr,
koch_follower,
make_robot_from_config,
reachy2,
so100_follower,
so101_follower,
)
@@ -86,11 +87,13 @@ class ReplayConfig:
play_sounds: bool = True
@draccus.wrap()
@parser.wrap()
def replay(cfg: ReplayConfig):
init_logging()
logging.info(pformat(asdict(cfg)))
robot_action_processor = make_default_robot_action_processor()
robot = make_robot_from_config(cfg.robot)
dataset = LeRobotDataset(cfg.dataset.repo_id, root=cfg.dataset.root, episodes=[cfg.dataset.episode])
@@ -109,7 +112,11 @@ def replay(cfg: ReplayConfig):
for i, name in enumerate(dataset.features["action"]["names"]):
action[name] = action_array[i]
robot.send_action(action)
robot_obs = robot.get_observation()
processed_action = robot_action_processor((action, robot_obs))
_ = robot.send_action(processed_action)
dt_s = time.perf_counter() - start_episode_t
busy_wait(1 / dataset.fps - dt_s)

View File

@@ -14,6 +14,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .config_so100_follower import SO100FollowerConfig, SO100FollowerEndEffectorConfig
from .config_so100_follower import SO100FollowerConfig
from .so100_follower import SO100Follower
from .so100_follower_end_effector import SO100FollowerEndEffector

View File

@@ -39,35 +39,3 @@ class SO100FollowerConfig(RobotConfig):
# Set to `True` for backward compatibility with previous policies/dataset
use_degrees: bool = False
@RobotConfig.register_subclass("so100_follower_end_effector")
@dataclass
class SO100FollowerEndEffectorConfig(SO100FollowerConfig):
"""Configuration for the SO100FollowerEndEffector robot."""
# Path to URDF file for kinematics
# NOTE: It is highly recommended to use the urdf in the SO-ARM100 repo:
# https://github.com/TheRobotStudio/SO-ARM100/blob/main/Simulation/SO101/so101_new_calib.urdf
urdf_path: str | None = None
# End-effector frame name in the URDF
target_frame_name: str = "gripper_frame_link"
# Default bounds for the end-effector position (in meters)
end_effector_bounds: dict[str, list[float]] = field(
default_factory=lambda: {
"min": [-1.0, -1.0, -1.0], # min x, y, z
"max": [1.0, 1.0, 1.0], # max x, y, z
}
)
max_gripper_pos: float = 50
end_effector_step_sizes: dict[str, float] = field(
default_factory=lambda: {
"x": 0.02,
"y": 0.02,
"z": 0.02,
}
)

View File

@@ -0,0 +1,616 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any
import numpy as np
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
from lerobot.model.kinematics import RobotKinematics
from lerobot.processor import (
EnvTransition,
ObservationProcessorStep,
ProcessorStep,
ProcessorStepRegistry,
RobotAction,
RobotActionProcessorStep,
TransitionKey,
)
from lerobot.utils.rotation import Rotation
@ProcessorStepRegistry.register("ee_reference_and_delta")
@dataclass
class EEReferenceAndDelta(RobotActionProcessorStep):
"""
Computes a target end-effector pose from a relative delta command.
This step takes a desired change in position and orientation (`target_*`) and applies it to a
reference end-effector pose to calculate an absolute target pose. The reference pose is derived
from the current robot joint positions using forward kinematics.
The processor can operate in two modes:
1. `use_latched_reference=True`: The reference pose is "latched" or saved at the moment the action
is first enabled. Subsequent commands are relative to this fixed reference.
2. `use_latched_reference=False`: The reference pose is updated to the robot's current pose at
every step.
Attributes:
kinematics: The robot's kinematic model for forward kinematics.
end_effector_step_sizes: A dictionary scaling the input delta commands.
motor_names: A list of motor names required for forward kinematics.
use_latched_reference: If True, latch the reference pose on enable; otherwise, always use the
current pose as the reference.
reference_ee_pose: Internal state storing the latched reference pose.
_prev_enabled: Internal state to detect the rising edge of the enable signal.
_command_when_disabled: Internal state to hold the last command while disabled.
"""
kinematics: RobotKinematics
end_effector_step_sizes: dict
motor_names: list[str]
use_latched_reference: bool = (
True # If True, latch reference on enable; if False, always use current pose
)
use_ik_solution: bool = False
reference_ee_pose: np.ndarray | None = field(default=None, init=False, repr=False)
_prev_enabled: bool = field(default=False, init=False, repr=False)
_command_when_disabled: np.ndarray | None = field(default=None, init=False, repr=False)
def action(self, action: RobotAction) -> RobotAction:
observation = self.transition.get(TransitionKey.OBSERVATION).copy()
if observation is None:
raise ValueError("Joints observation is require for computing robot kinematics")
if self.use_ik_solution and "IK_solution" in self.transition.get(TransitionKey.COMPLEMENTARY_DATA):
q_raw = self.transition.get(TransitionKey.COMPLEMENTARY_DATA)["IK_solution"]
else:
q_raw = np.array(
[
float(v)
for k, v in observation.items()
if isinstance(k, str)
and k.endswith(".pos")
and k.removesuffix(".pos") in self.motor_names
],
dtype=float,
)
if q_raw is None:
raise ValueError("Joints observation is require for computing robot kinematics")
# Current pose from FK on measured joints
t_curr = self.kinematics.forward_kinematics(q_raw)
enabled = bool(action.pop("enabled"))
tx = float(action.pop("target_x"))
ty = float(action.pop("target_y"))
tz = float(action.pop("target_z"))
wx = float(action.pop("target_wx"))
wy = float(action.pop("target_wy"))
wz = float(action.pop("target_wz"))
gripper_vel = float(action.pop("gripper_vel"))
desired = None
if enabled:
ref = t_curr
if self.use_latched_reference:
# Latched reference mode: latch reference at the rising edge
if not self._prev_enabled or self.reference_ee_pose is None:
self.reference_ee_pose = t_curr.copy()
ref = self.reference_ee_pose if self.reference_ee_pose is not None else t_curr
delta_p = np.array(
[
tx * self.end_effector_step_sizes["x"],
ty * self.end_effector_step_sizes["y"],
tz * self.end_effector_step_sizes["z"],
],
dtype=float,
)
r_abs = Rotation.from_rotvec([wx, wy, wz]).as_matrix()
desired = np.eye(4, dtype=float)
desired[:3, :3] = ref[:3, :3] @ r_abs
desired[:3, 3] = ref[:3, 3] + delta_p
self._command_when_disabled = desired.copy()
else:
# While disabled, keep sending the same command to avoid drift.
if self._command_when_disabled is None:
# If we've never had an enabled command yet, freeze current FK pose once.
self._command_when_disabled = t_curr.copy()
desired = self._command_when_disabled.copy()
# Write action fields
pos = desired[:3, 3]
tw = Rotation.from_matrix(desired[:3, :3]).as_rotvec()
action["ee.x"] = float(pos[0])
action["ee.y"] = float(pos[1])
action["ee.z"] = float(pos[2])
action["ee.wx"] = float(tw[0])
action["ee.wy"] = float(tw[1])
action["ee.wz"] = float(tw[2])
action["ee.gripper_vel"] = gripper_vel
self._prev_enabled = enabled
return action
def reset(self):
"""Resets the internal state of the processor."""
self._prev_enabled = False
self.reference_ee_pose = None
self._command_when_disabled = None
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for feat in [
"enabled",
"target_x",
"target_y",
"target_z",
"target_wx",
"target_wy",
"target_wz",
"gripper_vel",
]:
features[PipelineFeatureType.ACTION].pop(f"{feat}", None)
for feat in ["x", "y", "z", "wx", "wy", "wz", "gripper_vel"]:
features[PipelineFeatureType.ACTION][f"ee.{feat}"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features
@ProcessorStepRegistry.register("ee_bounds_and_safety")
@dataclass
class EEBoundsAndSafety(RobotActionProcessorStep):
"""
Clips the end-effector pose to predefined bounds and checks for unsafe jumps.
This step ensures that the target end-effector pose remains within a safe operational workspace.
It also moderates the command to prevent large, sudden movements between consecutive steps.
Attributes:
end_effector_bounds: A dictionary with "min" and "max" keys for position clipping.
max_ee_step_m: The maximum allowed change in position (in meters) between steps.
max_ee_twist_step_rad: The maximum allowed change in orientation (in radians) between steps.
_last_pos: Internal state storing the last commanded position.
_last_twist: Internal state storing the last commanded orientation.
"""
end_effector_bounds: dict
max_ee_step_m: float = 0.05
max_ee_twist_step_rad: float = 0.20
_last_pos: np.ndarray | None = field(default=None, init=False, repr=False)
_last_twist: np.ndarray | None = field(default=None, init=False, repr=False)
def action(self, action: RobotAction) -> RobotAction:
x = action["ee.x"]
y = action["ee.y"]
z = action["ee.z"]
wx = action["ee.wx"]
wy = action["ee.wy"]
wz = action["ee.wz"]
# TODO(Steven): ee.gripper_vel does not need to be bounded
if None in (x, y, z, wx, wy, wz):
raise ValueError(
"Missing required end-effector pose components: x, y, z, wx, wy, wz must all be present in action"
)
pos = np.array([x, y, z], dtype=float)
twist = np.array([wx, wy, wz], dtype=float)
# Clip position
pos = np.clip(pos, self.end_effector_bounds["min"], self.end_effector_bounds["max"])
# Check for jumps in position
if self._last_pos is not None:
dpos = pos - self._last_pos
n = float(np.linalg.norm(dpos))
if n > self.max_ee_step_m and n > 0:
pos = self._last_pos + dpos * (self.max_ee_step_m / n)
raise ValueError(f"EE jump {n:.3f}m > {self.max_ee_step_m}m")
self._last_pos = pos
self._last_twist = twist
action["ee.x"] = float(pos[0])
action["ee.y"] = float(pos[1])
action["ee.z"] = float(pos[2])
action["ee.wx"] = float(twist[0])
action["ee.wy"] = float(twist[1])
action["ee.wz"] = float(twist[2])
return action
def reset(self):
"""Resets the last known position and orientation."""
self._last_pos = None
self._last_twist = None
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
return features
@ProcessorStepRegistry.register("inverse_kinematics_ee_to_joints")
@dataclass
class InverseKinematicsEEToJoints(RobotActionProcessorStep):
"""
Computes desired joint positions from a target end-effector pose using inverse kinematics (IK).
This step translates a Cartesian command (position and orientation of the end-effector) into
the corresponding joint-space commands for each motor.
Attributes:
kinematics: The robot's kinematic model for inverse kinematics.
motor_names: A list of motor names for which to compute joint positions.
q_curr: Internal state storing the last joint positions, used as an initial guess for the IK solver.
initial_guess_current_joints: If True, use the robot's current joint state as the IK guess.
If False, use the solution from the previous step.
"""
kinematics: RobotKinematics
motor_names: list[str]
q_curr: np.ndarray | None = field(default=None, init=False, repr=False)
initial_guess_current_joints: bool = True
def action(self, action: RobotAction) -> RobotAction:
x = action.pop("ee.x")
y = action.pop("ee.y")
z = action.pop("ee.z")
wx = action.pop("ee.wx")
wy = action.pop("ee.wy")
wz = action.pop("ee.wz")
gripper_pos = action.pop("ee.gripper_pos")
if None in (x, y, z, wx, wy, wz, gripper_pos):
raise ValueError(
"Missing required end-effector pose components: ee.x, ee.y, ee.z, ee.wx, ee.wy, ee.wz, ee.gripper_pos must all be present in action"
)
observation = self.transition.get(TransitionKey.OBSERVATION).copy()
if observation is None:
raise ValueError("Joints observation is require for computing robot kinematics")
q_raw = np.array(
[float(v) for k, v in observation.items() if isinstance(k, str) and k.endswith(".pos")],
dtype=float,
)
if q_raw is None:
raise ValueError("Joints observation is require for computing robot kinematics")
if self.initial_guess_current_joints: # Use current joints as initial guess
self.q_curr = q_raw
else: # Use previous ik solution as initial guess
if self.q_curr is None:
self.q_curr = q_raw
# Build desired 4x4 transform from pos + rotvec (twist)
t_des = np.eye(4, dtype=float)
t_des[:3, :3] = Rotation.from_rotvec([wx, wy, wz]).as_matrix()
t_des[:3, 3] = [x, y, z]
# Compute inverse kinematics
q_target = self.kinematics.inverse_kinematics(self.q_curr, t_des)
self.q_curr = q_target
# TODO: This is sentitive to order of motor_names = q_target mapping
for i, name in enumerate(self.motor_names):
if name != "gripper":
action[f"{name}.pos"] = float(q_target[i])
else:
action["gripper.pos"] = float(gripper_pos)
return action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for feat in ["x", "y", "z", "wx", "wy", "wz", "gripper_pos"]:
features[PipelineFeatureType.ACTION].pop(f"ee.{feat}", None)
for name in self.motor_names:
features[PipelineFeatureType.ACTION][f"{name}.pos"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features
def reset(self):
"""Resets the initial guess for the IK solver."""
self.q_curr = None
@ProcessorStepRegistry.register("gripper_velocity_to_joint")
@dataclass
class GripperVelocityToJoint(RobotActionProcessorStep):
"""
Converts a gripper velocity command into a target gripper joint position.
This step integrates a normalized velocity command over time to produce a position command,
taking the current gripper position as a starting point. It also supports a discrete mode
where integer actions map to open, close, or no-op.
Attributes:
motor_names: A list of motor names, which must include 'gripper'.
speed_factor: A scaling factor to convert the normalized velocity command to a position change.
clip_min: The minimum allowed gripper joint position.
clip_max: The maximum allowed gripper joint position.
discrete_gripper: If True, treat the input action as discrete (0: open, 1: close, 2: stay).
"""
speed_factor: float = 20.0
clip_min: float = 0.0
clip_max: float = 100.0
discrete_gripper: bool = False
def action(self, action: RobotAction) -> RobotAction:
observation = self.transition.get(TransitionKey.OBSERVATION).copy()
gripper_vel = action.pop("ee.gripper_vel")
if observation is None:
raise ValueError("Joints observation is require for computing robot kinematics")
q_raw = np.array(
[float(v) for k, v in observation.items() if isinstance(k, str) and k.endswith(".pos")],
dtype=float,
)
if q_raw is None:
raise ValueError("Joints observation is require for computing robot kinematics")
if self.discrete_gripper:
# Discrete gripper actions are in [0, 1, 2]
# 0: open, 1: close, 2: stay
# We need to shift them to [-1, 0, 1] and then scale them to clip_max
gripper_vel = (gripper_vel - 1) * self.clip_max
# Compute desired gripper position
delta = gripper_vel * float(self.speed_factor)
# TODO: This assumes gripper is the last specified joint in the robot
gripper_pos = float(np.clip(q_raw[-1] + delta, self.clip_min, self.clip_max))
action["ee.gripper_pos"] = gripper_pos
return action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
features[PipelineFeatureType.ACTION].pop("ee.gripper_vel", None)
features[PipelineFeatureType.ACTION]["ee.gripper_pos"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features
def compute_forward_kinematics_joints_to_ee(
joints: dict[str, Any], kinematics: RobotKinematics, motor_names: list[str]
) -> dict[str, Any]:
motor_joint_values = [joints[f"{n}.pos"] for n in motor_names]
q = np.array(motor_joint_values, dtype=float)
t = kinematics.forward_kinematics(q)
pos = t[:3, 3]
tw = Rotation.from_matrix(t[:3, :3]).as_rotvec()
gripper_pos = joints["gripper.pos"]
for n in motor_names:
joints.pop(f"{n}.pos")
joints["ee.x"] = float(pos[0])
joints["ee.y"] = float(pos[1])
joints["ee.z"] = float(pos[2])
joints["ee.wx"] = float(tw[0])
joints["ee.wy"] = float(tw[1])
joints["ee.wz"] = float(tw[2])
joints["ee.gripper_pos"] = float(gripper_pos)
return joints
@ProcessorStepRegistry.register("forward_kinematics_joints_to_ee_observation")
@dataclass
class ForwardKinematicsJointsToEEObservation(ObservationProcessorStep):
"""
Computes the end-effector pose from joint positions using forward kinematics (FK).
This step is typically used to add the robot's Cartesian pose to the observation space,
which can be useful for visualization or as an input to a policy.
Attributes:
kinematics: The robot's kinematic model.
"""
kinematics: RobotKinematics
motor_names: list[str]
def observation(self, observation: dict[str, Any]) -> dict[str, Any]:
return compute_forward_kinematics_joints_to_ee(observation, self.kinematics, self.motor_names)
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
# We only use the ee pose in the dataset, so we don't need the joint positions
for n in self.motor_names:
features[PipelineFeatureType.OBSERVATION].pop(f"{n}.pos", None)
# We specify the dataset features of this step that we want to be stored in the dataset
for k in ["x", "y", "z", "wx", "wy", "wz", "gripper_pos"]:
features[PipelineFeatureType.OBSERVATION][f"ee.{k}"] = PolicyFeature(
type=FeatureType.STATE, shape=(1,)
)
return features
@ProcessorStepRegistry.register("forward_kinematics_joints_to_ee_action")
@dataclass
class ForwardKinematicsJointsToEEAction(RobotActionProcessorStep):
"""
Computes the end-effector pose from joint positions using forward kinematics (FK).
This step is typically used to add the robot's Cartesian pose to the observation space,
which can be useful for visualization or as an input to a policy.
Attributes:
kinematics: The robot's kinematic model.
"""
kinematics: RobotKinematics
motor_names: list[str]
def action(self, action: RobotAction) -> RobotAction:
return compute_forward_kinematics_joints_to_ee(action, self.kinematics, self.motor_names)
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
# We only use the ee pose in the dataset, so we don't need the joint positions
for n in self.motor_names:
features[PipelineFeatureType.ACTION].pop(f"{n}.pos", None)
# We specify the dataset features of this step that we want to be stored in the dataset
for k in ["x", "y", "z", "wx", "wy", "wz", "gripper_pos"]:
features[PipelineFeatureType.ACTION][f"ee.{k}"] = PolicyFeature(
type=FeatureType.STATE, shape=(1,)
)
return features
@ProcessorStepRegistry.register(name="forward_kinematics_joints_to_ee")
@dataclass
class ForwardKinematicsJointsToEE(ProcessorStep):
kinematics: RobotKinematics
motor_names: list[str]
def __post_init__(self):
self.joints_to_ee_action_processor = ForwardKinematicsJointsToEEAction(
kinematics=self.kinematics, motor_names=self.motor_names
)
self.joints_to_ee_observation_processor = ForwardKinematicsJointsToEEObservation(
kinematics=self.kinematics, motor_names=self.motor_names
)
def __call__(self, transition: EnvTransition) -> EnvTransition:
if transition.get(TransitionKey.ACTION) is not None:
transition = self.joints_to_ee_action_processor(transition)
if transition.get(TransitionKey.OBSERVATION) is not None:
transition = self.joints_to_ee_observation_processor(transition)
return transition
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
if features[PipelineFeatureType.ACTION] is not None:
features = self.joints_to_ee_action_processor.transform_features(features)
if features[PipelineFeatureType.OBSERVATION] is not None:
features = self.joints_to_ee_observation_processor.transform_features(features)
return features
@ProcessorStepRegistry.register("inverse_kinematics_rl_step")
@dataclass
class InverseKinematicsRLStep(ProcessorStep):
"""
Computes desired joint positions from a target end-effector pose using inverse kinematics (IK).
This is modified from the InverseKinematicsEEToJoints step to be used in the RL pipeline.
"""
kinematics: RobotKinematics
motor_names: list[str]
q_curr: np.ndarray | None = field(default=None, init=False, repr=False)
initial_guess_current_joints: bool = True
def __call__(self, transition: EnvTransition) -> EnvTransition:
new_transition = dict(transition)
action = new_transition.get(TransitionKey.ACTION)
if action is None:
raise ValueError("Action is required for InverseKinematicsEEToJoints")
action = dict(action)
x = action.pop("ee.x")
y = action.pop("ee.y")
z = action.pop("ee.z")
wx = action.pop("ee.wx")
wy = action.pop("ee.wy")
wz = action.pop("ee.wz")
gripper_pos = action.pop("ee.gripper_pos")
if None in (x, y, z, wx, wy, wz, gripper_pos):
raise ValueError(
"Missing required end-effector pose components: ee.x, ee.y, ee.z, ee.wx, ee.wy, ee.wz, ee.gripper_pos must all be present in action"
)
observation = new_transition.get(TransitionKey.OBSERVATION).copy()
if observation is None:
raise ValueError("Joints observation is require for computing robot kinematics")
q_raw = np.array(
[float(v) for k, v in observation.items() if isinstance(k, str) and k.endswith(".pos")],
dtype=float,
)
if q_raw is None:
raise ValueError("Joints observation is require for computing robot kinematics")
if self.initial_guess_current_joints: # Use current joints as initial guess
self.q_curr = q_raw
else: # Use previous ik solution as initial guess
if self.q_curr is None:
self.q_curr = q_raw
# Build desired 4x4 transform from pos + rotvec (twist)
t_des = np.eye(4, dtype=float)
t_des[:3, :3] = Rotation.from_rotvec([wx, wy, wz]).as_matrix()
t_des[:3, 3] = [x, y, z]
# Compute inverse kinematics
q_target = self.kinematics.inverse_kinematics(self.q_curr, t_des)
self.q_curr = q_target
# TODO: This is sentitive to order of motor_names = q_target mapping
for i, name in enumerate(self.motor_names):
if name != "gripper":
action[f"{name}.pos"] = float(q_target[i])
else:
action["gripper.pos"] = float(gripper_pos)
new_transition[TransitionKey.ACTION] = action
complementary_data = new_transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
complementary_data["IK_solution"] = q_target
new_transition[TransitionKey.COMPLEMENTARY_DATA] = complementary_data
return new_transition
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for feat in ["x", "y", "z", "wx", "wy", "wz", "gripper_pos"]:
features[PipelineFeatureType.ACTION].pop(f"ee.{feat}", None)
for name in self.motor_names:
features[PipelineFeatureType.ACTION][f"{name}.pos"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features
def reset(self):
"""Resets the initial guess for the IK solver."""
self.q_curr = None

View File

@@ -1,200 +0,0 @@
# !/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
import numpy as np
from lerobot.cameras import make_cameras_from_configs
from lerobot.errors import DeviceNotConnectedError
from lerobot.model.kinematics import RobotKinematics
from lerobot.motors import Motor, MotorNormMode
from lerobot.motors.feetech import FeetechMotorsBus
from . import SO100Follower
from .config_so100_follower import SO100FollowerEndEffectorConfig
logger = logging.getLogger(__name__)
class SO100FollowerEndEffector(SO100Follower):
"""
SO100Follower robot with end-effector space control.
This robot inherits from SO100Follower but transforms actions from
end-effector space to joint space before sending them to the motors.
"""
config_class = SO100FollowerEndEffectorConfig
name = "so100_follower_end_effector"
def __init__(self, config: SO100FollowerEndEffectorConfig):
super().__init__(config)
self.bus = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.DEGREES),
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.DEGREES),
"elbow_flex": Motor(3, "sts3215", MotorNormMode.DEGREES),
"wrist_flex": Motor(4, "sts3215", MotorNormMode.DEGREES),
"wrist_roll": Motor(5, "sts3215", MotorNormMode.DEGREES),
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
},
calibration=self.calibration,
)
self.cameras = make_cameras_from_configs(config.cameras)
self.config = config
# Initialize the kinematics module for the so100 robot
if self.config.urdf_path is None:
raise ValueError(
"urdf_path must be provided in the configuration for end-effector control. "
"Please set urdf_path in your SO100FollowerEndEffectorConfig."
)
self.kinematics = RobotKinematics(
urdf_path=self.config.urdf_path,
target_frame_name=self.config.target_frame_name,
)
# Store the bounds for end-effector position
self.end_effector_bounds = self.config.end_effector_bounds
self.current_ee_pos = None
self.current_joint_pos = None
@property
def action_features(self) -> dict[str, Any]:
"""
Define action features for end-effector control.
Returns dictionary with dtype, shape, and names.
"""
return {
"dtype": "float32",
"shape": (4,),
"names": {"delta_x": 0, "delta_y": 1, "delta_z": 2, "gripper": 3},
}
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""
Transform action from end-effector space to joint space and send to motors.
Args:
action: Dictionary with keys 'delta_x', 'delta_y', 'delta_z' for end-effector control
or a numpy array with [delta_x, delta_y, delta_z]
Returns:
The joint-space action that was sent to the motors
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
# Convert action to numpy array if not already
if isinstance(action, dict):
if all(k in action for k in ["delta_x", "delta_y", "delta_z"]):
delta_ee = np.array(
[
action["delta_x"] * self.config.end_effector_step_sizes["x"],
action["delta_y"] * self.config.end_effector_step_sizes["y"],
action["delta_z"] * self.config.end_effector_step_sizes["z"],
],
dtype=np.float32,
)
if "gripper" not in action:
action["gripper"] = [1.0]
action = np.append(delta_ee, action["gripper"])
else:
logger.warning(
f"Expected action keys 'delta_x', 'delta_y', 'delta_z', got {list(action.keys())}"
)
action = np.zeros(4, dtype=np.float32)
if self.current_joint_pos is None:
# Read current joint positions
current_joint_pos = self.bus.sync_read("Present_Position")
self.current_joint_pos = np.array([current_joint_pos[name] for name in self.bus.motors])
# Calculate current end-effector position using forward kinematics
if self.current_ee_pos is None:
self.current_ee_pos = self.kinematics.forward_kinematics(self.current_joint_pos)
# Set desired end-effector position by adding delta
desired_ee_pos = np.eye(4)
desired_ee_pos[:3, :3] = self.current_ee_pos[:3, :3] # Keep orientation
# Add delta to position and clip to bounds
desired_ee_pos[:3, 3] = self.current_ee_pos[:3, 3] + action[:3]
if self.end_effector_bounds is not None:
desired_ee_pos[:3, 3] = np.clip(
desired_ee_pos[:3, 3],
self.end_effector_bounds["min"],
self.end_effector_bounds["max"],
)
# Compute inverse kinematics to get joint positions
target_joint_values_in_degrees = self.kinematics.inverse_kinematics(
self.current_joint_pos, desired_ee_pos
)
# Create joint space action dictionary
joint_action = {
f"{key}.pos": target_joint_values_in_degrees[i] for i, key in enumerate(self.bus.motors.keys())
}
# Handle gripper separately if included in action
# Gripper delta action is in the range 0 - 2,
# We need to shift the action to the range -1, 1 so that we can expand it to -Max_gripper_pos, Max_gripper_pos
joint_action["gripper.pos"] = np.clip(
self.current_joint_pos[-1] + (action[-1] - 1) * self.config.max_gripper_pos,
5,
self.config.max_gripper_pos,
)
self.current_ee_pos = desired_ee_pos.copy()
self.current_joint_pos = target_joint_values_in_degrees.copy()
self.current_joint_pos[-1] = joint_action["gripper.pos"]
# Send joint space action to parent class
return super().send_action(joint_action)
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
# Read arm position
start = time.perf_counter()
obs_dict = self.bus.sync_read("Present_Position")
obs_dict = {f"{motor}.pos": val for motor, val in obs_dict.items()}
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[cam_key] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def reset(self):
self.current_ee_pos = None
self.current_joint_pos = None

View File

@@ -29,10 +29,6 @@ def make_robot_from_config(config: RobotConfig) -> Robot:
from .so100_follower import SO100Follower
return SO100Follower(config)
elif config.type == "so100_follower_end_effector":
from .so100_follower import SO100FollowerEndEffector
return SO100FollowerEndEffector(config)
elif config.type == "so101_follower":
from .so101_follower import SO101Follower
@@ -73,6 +69,7 @@ def make_robot_from_config(config: RobotConfig) -> Robot:
raise ValueError(config.type)
# TODO(pepijn): Move to pipeline step to make sure we don't have to do this in the robot code and send action to robot is clean for use in dataset
def ensure_safe_goal_position(
goal_present_pos: dict[str, tuple[float, float]], max_relative_target: float | dict[str, float]
) -> dict[str, float]:

View File

@@ -56,6 +56,7 @@ from copy import deepcopy
from dataclasses import asdict
from pathlib import Path
from pprint import pformat
from typing import Any
import einops
import gymnasium as gym
@@ -69,9 +70,9 @@ from lerobot.configs import parser
from lerobot.configs.eval import EvalPipelineConfig
from lerobot.envs.factory import make_env
from lerobot.envs.utils import add_envs_task, check_env_attributes_and_types, preprocess_observation
from lerobot.policies.factory import make_policy
from lerobot.policies.factory import make_policy, make_pre_post_processors
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import get_device_from_parameters
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
from lerobot.utils.io_utils import write_video
from lerobot.utils.random_utils import set_seed
from lerobot.utils.utils import (
@@ -84,6 +85,8 @@ from lerobot.utils.utils import (
def rollout(
env: gym.vector.VectorEnv,
policy: PreTrainedPolicy,
preprocessor: PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
postprocessor: PolicyProcessorPipeline[PolicyAction, PolicyAction],
seeds: list[int] | None = None,
return_observations: bool = False,
render_callback: Callable[[gym.vector.VectorEnv], None] | None = None,
@@ -120,7 +123,6 @@ def rollout(
The dictionary described above.
"""
assert isinstance(policy, nn.Module), "Policy must be a PyTorch nn module."
device = get_device_from_parameters(policy)
# Reset the policy and environments.
policy.reset()
@@ -151,23 +153,20 @@ def rollout(
if return_observations:
all_observations.append(deepcopy(observation))
observation = {
key: observation[key].to(device, non_blocking=device.type == "cuda") for key in observation
}
# Infer "task" from attributes of environments.
# TODO: works with SyncVectorEnv but not AsyncVectorEnv
observation = add_envs_task(env, observation)
observation = preprocessor(observation)
with torch.inference_mode():
action = policy.select_action(observation)
action = postprocessor(action)
# Convert to CPU / numpy.
action = action.to("cpu").numpy()
assert action.ndim == 2, "Action dimensions should be (batch, action_dim)"
action_numpy: np.ndarray = action.to("cpu").numpy()
assert action_numpy.ndim == 2, "Action dimensions should be (batch, action_dim)"
# Apply the next action.
observation, reward, terminated, truncated, info = env.step(action)
observation, reward, terminated, truncated, info = env.step(action_numpy)
if render_callback is not None:
render_callback(env)
@@ -181,7 +180,7 @@ def rollout(
# Keep track of which environments are done so far.
done = terminated | truncated | done
all_actions.append(torch.from_numpy(action))
all_actions.append(torch.from_numpy(action_numpy))
all_rewards.append(torch.from_numpy(reward))
all_dones.append(torch.from_numpy(done))
all_successes.append(torch.tensor(successes))
@@ -220,6 +219,8 @@ def rollout(
def eval_policy(
env: gym.vector.VectorEnv,
policy: PreTrainedPolicy,
preprocessor: PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
postprocessor: PolicyProcessorPipeline[PolicyAction, PolicyAction],
n_episodes: int,
max_episodes_rendered: int = 0,
videos_dir: Path | None = None,
@@ -296,8 +297,10 @@ def eval_policy(
start_seed + (batch_ix * env.num_envs), start_seed + ((batch_ix + 1) * env.num_envs)
)
rollout_data = rollout(
env,
policy,
env=env,
policy=policy,
preprocessor=preprocessor,
postprocessor=postprocessor,
seeds=list(seeds) if seeds else None,
return_observations=return_episode_data,
render_callback=render_frame if max_episodes_rendered > 0 else None,
@@ -479,13 +482,22 @@ def eval_main(cfg: EvalPipelineConfig):
cfg=cfg.policy,
env_cfg=cfg.env,
)
policy.eval()
preprocessor, postprocessor = make_pre_post_processors(
policy_cfg=cfg.policy,
pretrained_path=cfg.policy.pretrained_path,
# The inference device is automatically set to match the detected hardware, overriding any previous device settings from training to ensure compatibility.
preprocessor_overrides={"device_processor": {"device": str(policy.config.device)}},
)
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext():
info = eval_policy(
env,
policy,
cfg.eval.n_episodes,
env=env,
policy=policy,
preprocessor=preprocessor,
postprocessor=postprocessor,
n_episodes=cfg.eval.n_episodes,
max_episodes_rendered=10,
videos_dir=Path(cfg.output_dir) / "videos",
start_seed=cfg.seed,

View File

@@ -62,9 +62,16 @@ from lerobot.configs import parser
from lerobot.configs.train import TrainRLServerPipelineConfig
from lerobot.policies.factory import make_policy
from lerobot.policies.sac.modeling_sac import SACPolicy
from lerobot.processor import TransitionKey
from lerobot.robots import so100_follower # noqa: F401
from lerobot.scripts.rl.gym_manipulator import make_robot_env
from lerobot.scripts.rl.gym_manipulator import (
create_transition,
make_processors,
make_robot_env,
step_env_and_process_transition,
)
from lerobot.teleoperators import gamepad, so101_leader # noqa: F401
from lerobot.teleoperators.utils import TeleopEvents
from lerobot.transport import services_pb2, services_pb2_grpc
from lerobot.transport.utils import (
bytes_to_state_dict,
@@ -91,10 +98,7 @@ from lerobot.utils.utils import (
ACTOR_SHUTDOWN_TIMEOUT = 30
#################################################
# Main entry point #
#################################################
# Main entry point
@parser.wrap()
@@ -201,9 +205,7 @@ def actor_cli(cfg: TrainRLServerPipelineConfig):
logging.info("[ACTOR] queues closed")
#################################################
# Core algorithm functions #
#################################################
# Core algorithm functions
def act_with_policy(
@@ -236,7 +238,8 @@ def act_with_policy(
logging.info("make_env online")
online_env = make_robot_env(cfg=cfg.env)
online_env, teleop_device = make_robot_env(cfg=cfg.env)
env_processor, action_processor = make_processors(online_env, teleop_device, cfg.env, cfg.policy.device)
set_seed(cfg.seed)
device = get_safe_torch_device(cfg.policy.device, log=True)
@@ -257,6 +260,12 @@ def act_with_policy(
assert isinstance(policy, nn.Module)
obs, info = online_env.reset()
env_processor.reset()
action_processor.reset()
# Process initial observation
transition = create_transition(observation=obs, info=info)
transition = env_processor(transition)
# NOTE: For the moment we will solely handle the case of a single environment
sum_reward_episode = 0
@@ -274,45 +283,71 @@ def act_with_policy(
logging.info("[ACTOR] Shutting down act_with_policy")
return
if interaction_step >= cfg.policy.online_step_before_learning:
# Time policy inference and check if it meets FPS requirement
with policy_timer:
action = policy.select_action(batch=obs)
policy_fps = policy_timer.fps_last
observation = {
k: v for k, v in transition[TransitionKey.OBSERVATION].items() if k in cfg.policy.input_features
}
log_policy_frequency_issue(policy_fps=policy_fps, cfg=cfg, interaction_step=interaction_step)
# Time policy inference and check if it meets FPS requirement
with policy_timer:
# Extract observation from transition for policy
action = policy.select_action(batch=observation)
policy_fps = policy_timer.fps_last
else:
action = online_env.action_space.sample()
log_policy_frequency_issue(policy_fps=policy_fps, cfg=cfg, interaction_step=interaction_step)
next_obs, reward, done, truncated, info = online_env.step(action)
# Use the new step function
new_transition = step_env_and_process_transition(
env=online_env,
transition=transition,
action=action,
env_processor=env_processor,
action_processor=action_processor,
)
# Extract values from processed transition
next_observation = {
k: v
for k, v in new_transition[TransitionKey.OBSERVATION].items()
if k in cfg.policy.input_features
}
# Teleop action is the action that was executed in the environment
# It is either the action from the teleop device or the action from the policy
executed_action = new_transition[TransitionKey.COMPLEMENTARY_DATA]["teleop_action"]
reward = new_transition[TransitionKey.REWARD]
done = new_transition.get(TransitionKey.DONE, False)
truncated = new_transition.get(TransitionKey.TRUNCATED, False)
sum_reward_episode += float(reward)
# Increment total steps counter for intervention rate
episode_total_steps += 1
# NOTE: We override the action if the intervention is True, because the action applied is the intervention action
if "is_intervention" in info and info["is_intervention"]:
# NOTE: The action space for demonstration before hand is with the full action space
# but sometimes for example we want to deactivate the gripper
action = info["action_intervention"]
# Check for intervention from transition info
intervention_info = new_transition[TransitionKey.INFO]
if intervention_info.get(TeleopEvents.IS_INTERVENTION, False):
episode_intervention = True
# Increment intervention steps counter
episode_intervention_steps += 1
complementary_info = {
"discrete_penalty": torch.tensor(
[new_transition[TransitionKey.COMPLEMENTARY_DATA].get("discrete_penalty", 0.0)]
),
}
# Create transition for learner (convert to old format)
list_transition_to_send_to_learner.append(
Transition(
state=obs,
action=action,
state=observation,
action=executed_action,
reward=reward,
next_state=next_obs,
next_state=next_observation,
done=done,
truncated=truncated, # TODO: (azouitine) Handle truncation properly
complementary_info=info,
truncated=truncated,
complementary_info=complementary_info,
)
)
# assign obs to the next obs and continue the rollout
obs = next_obs
# Update transition for next iteration
transition = new_transition
if done or truncated:
logging.info(f"[ACTOR] Global step {interaction_step}: Episode reward: {sum_reward_episode}")
@@ -347,21 +382,27 @@ def act_with_policy(
)
)
# Reset intervention counters
# Reset intervention counters and environment
sum_reward_episode = 0.0
episode_intervention = False
episode_intervention_steps = 0
episode_total_steps = 0
# Reset environment and processors
obs, info = online_env.reset()
env_processor.reset()
action_processor.reset()
# Process initial observation
transition = create_transition(observation=obs, info=info)
transition = env_processor(transition)
if cfg.env.fps is not None:
dt_time = time.perf_counter() - start_time
busy_wait(1 / cfg.env.fps - dt_time)
#################################################
# Communication Functions - Group all gRPC/messaging functions #
#################################################
# Communication Functions - Group all gRPC/messaging functions
def establish_learner_connection(
@@ -606,9 +647,7 @@ def interactions_stream(
return services_pb2.Empty()
#################################################
# Policy functions #
#################################################
# Policy functions
def update_policy_parameters(policy: SACPolicy, parameters_queue: Queue, device):
@@ -640,9 +679,7 @@ def update_policy_parameters(policy: SACPolicy, parameters_queue: Queue, device)
logging.info("[ACTOR] Loaded discrete critic parameters from Learner.")
#################################################
# Utilities functions #
#################################################
# Utilities functions
def push_transitions_to_transport_queue(transitions: list, transitions_queue):

File diff suppressed because it is too large Load Diff

View File

@@ -75,6 +75,7 @@ from lerobot.policies.sac.modeling_sac import SACPolicy
from lerobot.robots import so100_follower # noqa: F401
from lerobot.scripts.rl import learner_service
from lerobot.teleoperators import gamepad, so101_leader # noqa: F401
from lerobot.teleoperators.utils import TeleopEvents
from lerobot.transport import services_pb2_grpc
from lerobot.transport.utils import (
MAX_MESSAGE_SIZE,
@@ -102,11 +103,6 @@ from lerobot.utils.wandb_utils import WandBLogger
LOG_PREFIX = "[LEARNER]"
#################################################
# MAIN ENTRY POINTS AND CORE ALGORITHM FUNCTIONS #
#################################################
@parser.wrap()
def train_cli(cfg: TrainRLServerPipelineConfig):
if not use_threads(cfg):
@@ -249,9 +245,7 @@ def start_learner_threads(
logging.info("[LEARNER] queues closed")
#################################################
# Core algorithm functions #
#################################################
# Core algorithm functions
def add_actor_information_and_train(
@@ -819,9 +813,7 @@ def make_optimizers_and_scheduler(cfg: TrainRLServerPipelineConfig, policy: nn.M
return optimizers, lr_scheduler
#################################################
# Training setup functions #
#################################################
# Training setup functions
def handle_resume_logic(cfg: TrainRLServerPipelineConfig) -> TrainRLServerPipelineConfig:
@@ -1022,9 +1014,7 @@ def initialize_offline_replay_buffer(
return offline_replay_buffer
#################################################
# Utilities/Helpers functions #
#################################################
# Utilities/Helpers functions
def get_observation_features(
@@ -1048,10 +1038,8 @@ def get_observation_features(
return None, None
with torch.no_grad():
observation_features = policy.actor.encoder.get_cached_image_features(observations, normalize=True)
next_observation_features = policy.actor.encoder.get_cached_image_features(
next_observations, normalize=True
)
observation_features = policy.actor.encoder.get_cached_image_features(observations)
next_observation_features = policy.actor.encoder.get_cached_image_features(next_observations)
return observation_features, next_observation_features
@@ -1176,7 +1164,7 @@ def process_transitions(
# Add to offline buffer if it's an intervention
if dataset_repo_id is not None and transition.get("complementary_info", {}).get(
"is_intervention"
TeleopEvents.IS_INTERVENTION
):
offline_replay_buffer.add(**transition)

View File

@@ -31,7 +31,7 @@ from lerobot.datasets.sampler import EpisodeAwareSampler
from lerobot.datasets.utils import cycle
from lerobot.envs.factory import make_env
from lerobot.optim.factory import make_optimizer_and_scheduler
from lerobot.policies.factory import make_policy
from lerobot.policies.factory import make_policy, make_pre_post_processors
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.policies.utils import get_device_from_parameters
from lerobot.scripts.eval import eval_policy
@@ -64,6 +64,28 @@ def update_policy(
use_amp: bool = False,
lock=None,
) -> tuple[MetricsTracker, dict]:
"""
Performs a single training step to update the policy's weights.
This function executes the forward and backward passes, clips gradients, and steps the optimizer and
learning rate scheduler. It also handles mixed-precision training via a GradScaler.
Args:
train_metrics: A MetricsTracker instance to record training statistics.
policy: The policy model to be trained.
batch: A batch of training data.
optimizer: The optimizer used to update the policy's parameters.
grad_clip_norm: The maximum norm for gradient clipping.
grad_scaler: The GradScaler for automatic mixed-precision training.
lr_scheduler: An optional learning rate scheduler.
use_amp: A boolean indicating whether to use automatic mixed precision.
lock: An optional lock for thread-safe optimizer updates.
Returns:
A tuple containing:
- The updated MetricsTracker with new statistics for this step.
- A dictionary of outputs from the policy's forward pass, for logging purposes.
"""
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
@@ -107,6 +129,20 @@ def update_policy(
@parser.wrap()
def train(cfg: TrainPipelineConfig):
"""
Main function to train a policy.
This function orchestrates the entire training pipeline, including:
- Setting up logging, seeding, and device configuration.
- Creating the dataset, evaluation environment (if applicable), policy, and optimizer.
- Handling resumption from a checkpoint.
- Running the main training loop, which involves fetching data batches and calling `update_policy`.
- Periodically logging metrics, saving model checkpoints, and evaluating the policy.
- Pushing the final trained model to the Hugging Face Hub if configured.
Args:
cfg: A `TrainPipelineConfig` object containing all training configurations.
"""
cfg.validate()
logging.info(pformat(cfg.to_dict()))
@@ -141,6 +177,16 @@ def train(cfg: TrainPipelineConfig):
ds_meta=dataset.meta,
)
# Create processors - only provide dataset_stats if not resuming from saved processors
processor_kwargs = {}
if not (cfg.resume and cfg.policy.pretrained_path):
# Only provide dataset_stats when not resuming from saved processor state
processor_kwargs["dataset_stats"] = dataset.meta.stats
preprocessor, postprocessor = make_pre_post_processors(
policy_cfg=cfg.policy, pretrained_path=cfg.policy.pretrained_path, **processor_kwargs
)
logging.info("Creating optimizer and scheduler")
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(device.type, enabled=cfg.policy.use_amp)
@@ -205,15 +251,9 @@ def train(cfg: TrainPipelineConfig):
for _ in range(step, cfg.steps):
start_time = time.perf_counter()
batch = next(dl_iter)
batch = preprocessor(batch)
train_tracker.dataloading_s = time.perf_counter() - start_time
for key in batch:
if isinstance(batch[key], torch.Tensor):
if batch[key].dtype != torch.bool:
batch[key] = batch[key].type(torch.float32) if device.type == "mps" else batch[key]
batch[key] = batch[key].to(device, non_blocking=device.type == "cuda")
train_tracker, output_dict = update_policy(
train_tracker,
policy,
@@ -245,7 +285,9 @@ def train(cfg: TrainPipelineConfig):
if cfg.save_checkpoint and is_saving_step:
logging.info(f"Checkpoint policy after step {step}")
checkpoint_dir = get_step_checkpoint_dir(cfg.output_dir, cfg.steps, step)
save_checkpoint(checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler)
save_checkpoint(
checkpoint_dir, step, cfg, policy, optimizer, lr_scheduler, preprocessor, postprocessor
)
update_last_checkpoint(checkpoint_dir)
if wandb_logger:
wandb_logger.log_policy(checkpoint_dir)
@@ -258,9 +300,11 @@ def train(cfg: TrainPipelineConfig):
torch.autocast(device_type=device.type) if cfg.policy.use_amp else nullcontext(),
):
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
env=eval_env,
policy=policy,
preprocessor=preprocessor,
postprocessor=postprocessor,
n_episodes=cfg.eval.n_episodes,
videos_dir=cfg.output_dir / "eval" / f"videos_step_{step_id}",
max_episodes_rendered=4,
start_seed=cfg.seed,
@@ -289,6 +333,8 @@ def train(cfg: TrainPipelineConfig):
if cfg.policy.push_to_hub:
policy.push_model_to_hub(cfg)
preprocessor.push_to_hub(cfg.policy.repo_id)
postprocessor.push_to_hub(cfg.policy.repo_id)
def main():

View File

@@ -56,11 +56,17 @@ import time
from dataclasses import asdict, dataclass
from pprint import pformat
import draccus
import rerun as rr
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
from lerobot.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
from lerobot.configs import parser
from lerobot.processor import (
RobotAction,
RobotObservation,
RobotProcessorPipeline,
make_default_processors,
)
from lerobot.robots import ( # noqa: F401
Robot,
RobotConfig,
@@ -100,36 +106,81 @@ class TeleoperateConfig:
def teleop_loop(
teleop: Teleoperator, robot: Robot, fps: int, display_data: bool = False, duration: float | None = None
teleop: Teleoperator,
robot: Robot,
fps: int,
teleop_action_processor: RobotProcessorPipeline[tuple[RobotAction, RobotObservation], RobotAction],
robot_action_processor: RobotProcessorPipeline[tuple[RobotAction, RobotObservation], RobotAction],
robot_observation_processor: RobotProcessorPipeline[RobotObservation, RobotObservation],
display_data: bool = False,
duration: float | None = None,
):
"""
This function continuously reads actions from a teleoperation device, processes them through optional
pipelines, sends them to a robot, and optionally displays the robot's state. The loop runs at a
specified frequency until a set duration is reached or it is manually interrupted.
Args:
teleop: The teleoperator device instance providing control actions.
robot: The robot instance being controlled.
fps: The target frequency for the control loop in frames per second.
display_data: If True, fetches robot observations and displays them in the console and Rerun.
duration: The maximum duration of the teleoperation loop in seconds. If None, the loop runs indefinitely.
teleop_action_processor: An optional pipeline to process raw actions from the teleoperator.
robot_action_processor: An optional pipeline to process actions before they are sent to the robot.
robot_observation_processor: An optional pipeline to process raw observations from the robot.
"""
display_len = max(len(key) for key in robot.action_features)
start = time.perf_counter()
while True:
loop_start = time.perf_counter()
action = teleop.get_action()
if display_data:
observation = robot.get_observation()
log_rerun_data(observation, action)
robot.send_action(action)
# Get robot observation
# Not really needed for now other than for visualization
# teleop_action_processor can take None as an observation
# given that it is the identity processor as default
obs = robot.get_observation()
# Get teleop action
raw_action = teleop.get_action()
# Process teleop action through pipeline
teleop_action = teleop_action_processor((raw_action, obs))
# Process action for robot through pipeline
robot_action_to_send = robot_action_processor((teleop_action, obs))
# Send processed action to robot (robot_action_processor.to_output should return dict[str, Any])
_ = robot.send_action(robot_action_to_send)
if display_data:
# Process robot observation through pipeline
obs_transition = robot_observation_processor(obs)
log_rerun_data(
observation=obs_transition,
action=teleop_action,
)
print("\n" + "-" * (display_len + 10))
print(f"{'NAME':<{display_len}} | {'NORM':>7}")
# Display the final robot action that was sent
for motor, value in robot_action_to_send.items():
print(f"{motor:<{display_len}} | {value:>7.2f}")
move_cursor_up(len(robot_action_to_send) + 5)
dt_s = time.perf_counter() - loop_start
busy_wait(1 / fps - dt_s)
loop_s = time.perf_counter() - loop_start
print("\n" + "-" * (display_len + 10))
print(f"{'NAME':<{display_len}} | {'NORM':>7}")
for motor, value in action.items():
print(f"{motor:<{display_len}} | {value:>7.2f}")
print(f"\ntime: {loop_s * 1e3:.2f}ms ({1 / loop_s:.0f} Hz)")
if duration is not None and time.perf_counter() - start >= duration:
return
move_cursor_up(len(action) + 5)
@draccus.wrap()
@parser.wrap()
def teleoperate(cfg: TeleoperateConfig):
init_logging()
logging.info(pformat(asdict(cfg)))
@@ -138,12 +189,22 @@ def teleoperate(cfg: TeleoperateConfig):
teleop = make_teleoperator_from_config(cfg.teleop)
robot = make_robot_from_config(cfg.robot)
teleop_action_processor, robot_action_processor, robot_observation_processor = make_default_processors()
teleop.connect()
robot.connect()
try:
teleop_loop(teleop, robot, cfg.fps, display_data=cfg.display_data, duration=cfg.teleop_time_s)
teleop_loop(
teleop=teleop,
robot=robot,
fps=cfg.fps,
display_data=cfg.display_data,
duration=cfg.teleop_time_s,
teleop_action_processor=teleop_action_processor,
robot_action_processor=robot_action_processor,
robot_observation_processor=robot_observation_processor,
)
except KeyboardInterrupt:
pass
finally:

View File

@@ -16,4 +16,4 @@
from .config import TeleoperatorConfig
from .teleoperator import Teleoperator
from .utils import make_teleoperator_from_config
from .utils import TeleopEvents, make_teleoperator_from_config

View File

@@ -16,6 +16,8 @@
import logging
from ..utils import TeleopEvents
class InputController:
"""Base class for input controllers that generate motion deltas."""
@@ -134,10 +136,10 @@ class KeyboardController(InputController):
return False
elif key == keyboard.Key.enter:
self.key_states["success"] = True
self.episode_end_status = "success"
self.episode_end_status = TeleopEvents.SUCCESS
elif key == keyboard.Key.backspace:
self.key_states["failure"] = True
self.episode_end_status = "failure"
self.episode_end_status = TeleopEvents.FAILURE
except AttributeError:
pass
@@ -255,13 +257,13 @@ class GamepadController(InputController):
for event in pygame.event.get():
if event.type == pygame.JOYBUTTONDOWN:
if event.button == 3:
self.episode_end_status = "success"
self.episode_end_status = TeleopEvents.SUCCESS
# A button (1) for failure
elif event.button == 1:
self.episode_end_status = "failure"
self.episode_end_status = TeleopEvents.FAILURE
# X button (0) for rerecord
elif event.button == 0:
self.episode_end_status = "rerecord_episode"
self.episode_end_status = TeleopEvents.RERECORD_EPISODE
# RB button (6) for closing gripper
elif event.button == 6:
@@ -295,8 +297,8 @@ class GamepadController(InputController):
try:
# Read joystick axes
# Left stick X and Y (typically axes 0 and 1)
x_input = self.joystick.get_axis(0) # Left/Right
y_input = self.joystick.get_axis(1) # Up/Down (often inverted)
y_input = self.joystick.get_axis(0) # Up/Down (often inverted)
x_input = self.joystick.get_axis(1) # Left/Right
# Right stick Y (typically axis 3 or 4)
z_input = self.joystick.get_axis(3) # Up/Down for Z
@@ -308,7 +310,7 @@ class GamepadController(InputController):
# Calculate deltas (note: may need to invert axes depending on controller)
delta_x = -x_input * self.x_step_size # Forward/backward
delta_y = y_input * self.y_step_size # Left/right
delta_y = -y_input * self.y_step_size # Left/right
delta_z = -z_input * self.z_step_size # Up/down
return delta_x, delta_y, delta_z
@@ -451,11 +453,11 @@ class GamepadControllerHID(InputController):
# Check if X/Square button (bit 5) is pressed for failure
# Check if A/Cross button (bit 4) is pressed for rerecording
if buttons & 1 << 7:
self.episode_end_status = "success"
self.episode_end_status = TeleopEvents.SUCCESS
elif buttons & 1 << 5:
self.episode_end_status = "failure"
self.episode_end_status = TeleopEvents.FAILURE
elif buttons & 1 << 4:
self.episode_end_status = "rerecord_episode"
self.episode_end_status = TeleopEvents.RERECORD_EPISODE
else:
self.episode_end_status = None

View File

@@ -21,6 +21,7 @@ from typing import Any
import numpy as np
from ..teleoperator import Teleoperator
from ..utils import TeleopEvents
from .configuration_gamepad import GamepadTeleopConfig
@@ -107,6 +108,48 @@ class GamepadTeleop(Teleoperator):
return action_dict
def get_teleop_events(self) -> dict[str, Any]:
"""
Get extra control events from the gamepad such as intervention status,
episode termination, success indicators, etc.
Returns:
Dictionary containing:
- is_intervention: bool - Whether human is currently intervening
- terminate_episode: bool - Whether to terminate the current episode
- success: bool - Whether the episode was successful
- rerecord_episode: bool - Whether to rerecord the episode
"""
if self.gamepad is None:
return {
TeleopEvents.IS_INTERVENTION: False,
TeleopEvents.TERMINATE_EPISODE: False,
TeleopEvents.SUCCESS: False,
TeleopEvents.RERECORD_EPISODE: False,
}
# Update gamepad state to get fresh inputs
self.gamepad.update()
# Check if intervention is active
is_intervention = self.gamepad.should_intervene()
# Get episode end status
episode_end_status = self.gamepad.get_episode_end_status()
terminate_episode = episode_end_status in [
TeleopEvents.RERECORD_EPISODE,
TeleopEvents.FAILURE,
]
success = episode_end_status == TeleopEvents.SUCCESS
rerecord_episode = episode_end_status == TeleopEvents.RERECORD_EPISODE
return {
TeleopEvents.IS_INTERVENTION: is_intervention,
TeleopEvents.TERMINATE_EPISODE: terminate_episode,
TeleopEvents.SUCCESS: success,
TeleopEvents.RERECORD_EPISODE: rerecord_episode,
}
def disconnect(self) -> None:
"""Disconnect from the gamepad."""
if self.gamepad is not None:

View File

@@ -24,6 +24,7 @@ from typing import Any
from lerobot.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..teleoperator import Teleoperator
from ..utils import TeleopEvents
from .configuration_keyboard import KeyboardEndEffectorTeleopConfig, KeyboardTeleopConfig
PYNPUT_AVAILABLE = True
@@ -176,16 +177,6 @@ class KeyboardEndEffectorTeleop(KeyboardTeleop):
"names": {"delta_x": 0, "delta_y": 1, "delta_z": 2},
}
def _on_press(self, key):
if hasattr(key, "char"):
key = key.char
self.event_queue.put((key, True))
def _on_release(self, key):
if hasattr(key, "char"):
key = key.char
self.event_queue.put((key, False))
def get_action(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(
@@ -235,3 +226,66 @@ class KeyboardEndEffectorTeleop(KeyboardTeleop):
action_dict["gripper"] = gripper_action
return action_dict
def get_teleop_events(self) -> dict[str, Any]:
"""
Get extra control events from the keyboard such as intervention status,
episode termination, success indicators, etc.
Keyboard mappings:
- Any movement keys pressed = intervention active
- 's' key = success (terminate episode successfully)
- 'r' key = rerecord episode (terminate and rerecord)
- 'q' key = quit episode (terminate without success)
Returns:
Dictionary containing:
- is_intervention: bool - Whether human is currently intervening
- terminate_episode: bool - Whether to terminate the current episode
- success: bool - Whether the episode was successful
- rerecord_episode: bool - Whether to rerecord the episode
"""
if not self.is_connected:
return {
TeleopEvents.IS_INTERVENTION: False,
TeleopEvents.TERMINATE_EPISODE: False,
TeleopEvents.SUCCESS: False,
TeleopEvents.RERECORD_EPISODE: False,
}
# Check if any movement keys are currently pressed (indicates intervention)
movement_keys = [
keyboard.Key.up,
keyboard.Key.down,
keyboard.Key.left,
keyboard.Key.right,
keyboard.Key.shift,
keyboard.Key.shift_r,
keyboard.Key.ctrl_r,
keyboard.Key.ctrl_l,
]
is_intervention = any(self.current_pressed.get(key, False) for key in movement_keys)
# Check for episode control commands from misc_keys_queue
terminate_episode = False
success = False
rerecord_episode = False
# Process any pending misc keys
while not self.misc_keys_queue.empty():
key = self.misc_keys_queue.get_nowait()
if key == "s":
success = True
elif key == "r":
terminate_episode = True
rerecord_episode = True
elif key == "q":
terminate_episode = True
success = False
return {
TeleopEvents.IS_INTERVENTION: is_intervention,
TeleopEvents.TERMINATE_EPISODE: terminate_episode,
TeleopEvents.SUCCESS: success,
TeleopEvents.RERECORD_EPISODE: rerecord_episode,
}

View File

@@ -0,0 +1,18 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config_phone import PhoneConfig
from .teleop_phone import Phone

View File

@@ -0,0 +1,36 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from enum import Enum
import numpy as np
from ..config import TeleoperatorConfig
class PhoneOS(Enum):
ANDROID = "android"
IOS = "ios"
@TeleoperatorConfig.register_subclass("phone")
@dataclass
class PhoneConfig(TeleoperatorConfig):
phone_os: PhoneOS = PhoneOS.IOS
camera_offset = np.array(
[0.0, -0.02, 0.04]
) # iPhone 14 Pro camera is 2cm off center and 4cm above center

View File

@@ -0,0 +1,110 @@
# !/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
from lerobot.processor import ProcessorStepRegistry, RobotAction, RobotActionProcessorStep
from lerobot.teleoperators.phone.config_phone import PhoneOS
@ProcessorStepRegistry.register("map_phone_action_to_robot_action")
@dataclass
class MapPhoneActionToRobotAction(RobotActionProcessorStep):
"""
Maps calibrated phone pose actions to standardized robot action inputs.
This processor step acts as a bridge between the phone teleoperator's output
and the robot's expected action format. It remaps the phone's 6-DoF pose
(position and rotation) to the robot's target end-effector pose, applying
necessary axis inversions and swaps. It also interprets platform-specific
button presses to generate a gripper command.
Attributes:
platform: The operating system of the phone (iOS or Android), used
to determine the correct button mappings for the gripper.
"""
# TODO(Steven): Gripper vel could be output of phone_teleop directly
platform: PhoneOS
_enabled_prev: bool = field(default=False, init=False, repr=False)
def action(self, action: RobotAction) -> RobotAction:
"""
Processes the phone action dictionary to create a robot action dictionary.
Args:
act: The input action dictionary from the phone teleoperator.
Returns:
A new action dictionary formatted for the robot controller.
Raises:
ValueError: If 'pos' or 'rot' keys are missing from the input action.
"""
# Pop them from the action
enabled = bool(action.pop("phone.enabled"))
pos = action.pop("phone.pos")
rot = action.pop("phone.rot")
inputs = action.pop("phone.raw_inputs")
if pos is None or rot is None:
raise ValueError("pos and rot must be present in action")
rotvec = rot.as_rotvec() # Absolute orientation as rotvec
# Map certain inputs to certain actions
if self.platform == PhoneOS.IOS:
gripper_vel = float(inputs.get("a3", 0.0))
else:
a = float(inputs.get("reservedButtonA", 0.0))
b = float(inputs.get("reservedButtonB", 0.0))
gripper_vel = (
a - b
) # Positive if a is pressed, negative if b is pressed, 0 if both or neither are pressed
# For some actions we need to invert the axis
action["enabled"] = enabled
action["target_x"] = -pos[1] if enabled else 0.0
action["target_y"] = pos[0] if enabled else 0.0
action["target_z"] = pos[2] if enabled else 0.0
action["target_wx"] = rotvec[1] if enabled else 0.0
action["target_wy"] = rotvec[0] if enabled else 0.0
action["target_wz"] = -rotvec[2] if enabled else 0.0
action["gripper_vel"] = gripper_vel # Still send gripper action when disabled
return action
def transform_features(
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
for feat in ["enabled", "pos", "rot", "raw_inputs"]:
features[PipelineFeatureType.ACTION].pop(f"phone.{feat}", None)
for feat in [
"enabled",
"target_x",
"target_y",
"target_z",
"target_wx",
"target_wy",
"target_wz",
"gripper_vel",
]:
features[PipelineFeatureType.ACTION][f"{feat}"] = PolicyFeature(
type=FeatureType.ACTION, shape=(1,)
)
return features

View File

@@ -0,0 +1,421 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Docs:
# hebi: https://docs.hebi.us/tools.html#mobile-io
# teleop: https://github.com/SpesRobotics/teleop
import logging
import threading
import time
import hebi
import numpy as np
from teleop import Teleop
from lerobot.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.teleoperators.phone.config_phone import PhoneConfig, PhoneOS
from lerobot.teleoperators.teleoperator import Teleoperator
from lerobot.utils.rotation import Rotation
logger = logging.getLogger(__name__)
class BasePhone:
_enabled: bool = False
_calib_pos: np.ndarray | None = None
_calib_rot_inv: Rotation | None = None
def _reapply_position_calibration(self, pos: np.ndarray) -> None:
self._calib_pos = pos.copy()
@property
def is_calibrated(self) -> bool:
return (self._calib_pos is not None) and (self._calib_rot_inv is not None)
@property
def action_features(self) -> dict[str, type]:
return {
"phone.pos": np.ndarray, # shape (3,)
"phone.rot": Rotation, # scipy.spatial.transform.Rotation
"phone.raw_inputs": dict, # analogs/buttons or webXR meta
"phone.enabled": bool,
}
@property
def feedback_features(self) -> dict[str, type]:
# No haptic or other feedback implemented yet
pass
def configure(self) -> None:
# No additional configuration required for phone teleop
pass
def send_feedback(self, feedback: dict[str, float]) -> None:
# We could add haptic feedback (vibrations) here, but it's not implemented yet
raise NotImplementedError
class IOSPhone(BasePhone, Teleoperator):
name = "ios_phone"
def __init__(self, config: PhoneConfig):
super().__init__(config)
self.config = config
self._group = None
@property
def is_connected(self) -> bool:
return self._group is not None
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
logger.info("Connecting to IPhone, make sure to open the HEBI Mobile I/O app.")
lookup = hebi.Lookup()
time.sleep(2.0)
group = lookup.get_group_from_names(["HEBI"], ["mobileIO"])
if group is None:
raise RuntimeError("Mobile I/O not found — check name/family settings in the app.")
self._group = group
logger.info(f"{self} connected to HEBI group with {group.size} module(s).")
self.calibrate()
def calibrate(self) -> None:
print(
"Hold the phone so that: top edge points forward in same direction as the robot (robot +x) and screen points up (robot +z)"
)
print("Press and hold B1 in the HEBI Mobile I/O app to capture this pose...\n")
position, rotation = self._wait_for_capture_trigger()
self._calib_pos = position.copy()
self._calib_rot_inv = rotation.inv()
self._enabled = False
print("Calibration done\n")
def _wait_for_capture_trigger(self) -> tuple[np.ndarray, Rotation]:
"""
Blocks execution until the calibration trigger is detected from the iOS device.
This method enters a loop, continuously reading the phone's state. It waits for the user to press
and hold the 'B1' button in the HEBI Mobile I/O app. Once B1 is pressed, the loop breaks and
returns the phone's pose at that exact moment.
Returns:
A tuple containing the position (np.ndarray) and rotation (Rotation) of the phone at the
moment the trigger was activated.
"""
while True:
has_pose, position, rotation, fb_pose = self._read_current_pose()
if not has_pose:
time.sleep(0.01)
continue
io = getattr(fb_pose, "io", None)
button_b = getattr(io, "b", None) if io is not None else None
button_b1_pressed = False
if button_b is not None:
button_b1_pressed = bool(button_b.get_int(1))
if button_b1_pressed:
return position, rotation
time.sleep(0.01)
def _read_current_pose(self) -> tuple[bool, np.ndarray | None, Rotation | None, object | None]:
"""
Reads the instantaneous 6-DoF pose from the connected iOS device via the HEBI SDK.
This method fetches the latest feedback packet from the HEBI group, extracts the ARKit
position and orientation, and converts them into a standard format. It also applies a
configured camera offset to adjust the pose from the camera's frame to the phone's
physical frame.
Returns:
A tuple containing:
- A boolean indicating if a valid pose was successfully read.
- The 3D position as a NumPy array, or None if not available.
- The orientation as a `Rotation` object, or None if not available.
- The raw HEBI feedback object for accessing other data like button presses.
"""
fbk = self._group.get_next_feedback()
pose = fbk[0]
ar_pos = getattr(pose, "ar_position", None)
ar_quat = getattr(pose, "ar_orientation", None)
if ar_pos is None or ar_quat is None:
return False, None, None, None
# HEBI provides orientation in w, x, y, z format.
# Scipy's Rotation expects x, y, z, w.
quat_xyzw = np.concatenate((ar_quat[1:], [ar_quat[0]])) # wxyz to xyzw
rot = Rotation.from_quat(quat_xyzw)
pos = ar_pos - rot.apply(self.config.camera_offset)
return True, pos, rot, pose
def get_action(self) -> dict:
has_pose, raw_position, raw_rotation, fb_pose = self._read_current_pose()
if not has_pose or not self.is_calibrated:
return {}
# Collect raw inputs (B1 / analogs on iOS, move/scale on Android)
raw_inputs: dict[str, float | int | bool] = {}
io = getattr(fb_pose, "io", None)
if io is not None:
bank_a, bank_b = io.a, io.b
if bank_a:
for ch in range(1, 9):
if bank_a.has_float(ch):
raw_inputs[f"a{ch}"] = float(bank_a.get_float(ch))
if bank_b:
for ch in range(1, 9):
if bank_b.has_int(ch):
raw_inputs[f"b{ch}"] = int(bank_b.get_int(ch))
elif hasattr(bank_b, "has_bool") and bank_b.has_bool(ch):
raw_inputs[f"b{ch}"] = int(bank_b.get_bool(ch))
enable = bool(raw_inputs.get("b1", 0))
# Rising edge then re-capture calibration immediately from current raw pose
if enable and not self._enabled:
self._reapply_position_calibration(raw_position)
# Apply calibration
pos_cal = self._calib_rot_inv.apply(raw_position - self._calib_pos)
rot_cal = self._calib_rot_inv * raw_rotation
self._enabled = enable
return {
"phone.pos": pos_cal,
"phone.rot": rot_cal,
"phone.raw_inputs": raw_inputs,
"phone.enabled": self._enabled,
}
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self._group = None
class AndroidPhone(BasePhone, Teleoperator):
name = "android_phone"
def __init__(self, config: PhoneConfig):
super().__init__(config)
self.config = config
self._teleop = None
self._teleop_thread = None
self._latest_pose = None
self._latest_message = None
self._android_lock = threading.Lock()
@property
def is_connected(self) -> bool:
return self._teleop is not None
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
logger.info("Starting teleop stream for Android...")
self._teleop = Teleop()
self._teleop.subscribe(self._android_callback)
self._teleop_thread = threading.Thread(target=self._teleop.run, daemon=True)
self._teleop_thread.start()
logger.info(f"{self} connected, teleop stream started.")
self.calibrate()
def calibrate(self) -> None:
print(
"Hold the phone so that: top edge points forward in same direction as the robot (robot +x) and screen points up (robot +z)"
)
print("Touch and move on the WebXR page to capture this pose...\n")
pos, rot = self._wait_for_capture_trigger()
self._calib_pos = pos.copy()
self._calib_rot_inv = rot.inv()
self._enabled = False
print("Calibration done\n")
def _wait_for_capture_trigger(self) -> tuple[np.ndarray, Rotation]:
"""
Blocks execution until the calibration trigger is detected from the Android device.
This method enters a loop, continuously checking the latest message received from the WebXR
session. It waits for the user to touch and move their finger on the screen, which generates
a `move` event. Once this event is detected, the loop breaks and returns the phone's current
pose.
Returns:
A tuple containing the position (np.ndarray) and rotation (Rotation) of the phone at the
moment the trigger was activated.
"""
while True:
with self._android_lock:
msg = self._latest_message or {}
if bool(msg.get("move", False)):
ok, pos, rot, _pose = self._read_current_pose()
if ok:
return pos, rot
time.sleep(0.01)
def _read_current_pose(self) -> tuple[bool, np.ndarray | None, Rotation | None, object | None]:
"""
Reads the latest 6-DoF pose received from the Android device's WebXR session.
This method accesses the most recent pose data stored by the `_android_callback`. It uses a
thread lock to safely read the shared `_latest_pose` variable. The pose, a 4x4 matrix, is
then decomposed into position and rotation, and the configured camera offset is applied.
Returns:
A tuple containing:
- A boolean indicating if a valid pose was available.
- The 3D position as a NumPy array, or None if no pose has been received yet.
- The orientation as a `Rotation` object, or None if no pose has been received.
- The raw 4x4 pose matrix as received from the teleop stream.
"""
with self._android_lock:
if self._latest_pose is None:
return False, None, None, None
p = self._latest_pose.copy()
pose = self._latest_pose
rot = Rotation.from_matrix(p[:3, :3])
pos = p[:3, 3] - rot.apply(self.config.camera_offset)
return True, pos, rot, pose
def _android_callback(self, pose: np.ndarray, message: dict) -> None:
"""
Callback function to handle incoming data from the Android teleop stream.
This method is executed by the `teleop` package's subscriber thread whenever a new
pose and message are received from the WebXR session on the Android phone. It updates
the internal state (`_latest_pose` and `_latest_message`) with the new data.
A thread lock is used to ensure that these shared variables are updated atomically,
preventing race conditions with the main thread that reads them.
Args:
pose: A 4x4 NumPy array representing the phone's transformation matrix.
message: A dictionary containing additional data, such as button presses or touch events.
"""
with self._android_lock:
self._latest_pose = pose
self._latest_message = message
def get_action(self) -> dict:
ok, raw_pos, raw_rot, pose = self._read_current_pose()
if not ok or not self.is_calibrated:
return {}
# Collect raw inputs (B1 / analogs on iOS, move/scale on Android)
raw_inputs: dict[str, float | int | bool] = {}
msg = self._latest_message or {}
raw_inputs["move"] = bool(msg.get("move", False))
raw_inputs["scale"] = float(msg.get("scale", 1.0))
raw_inputs["reservedButtonA"] = bool(msg.get("reservedButtonA", False))
raw_inputs["reservedButtonB"] = bool(msg.get("reservedButtonB", False))
enable = bool(raw_inputs.get("move", False))
# Rising edge then re-capture calibration immediately from current raw pose
if enable and not self._enabled:
self._reapply_position_calibration(raw_pos)
# Apply calibration
pos_cal = self._calib_rot_inv.apply(raw_pos - self._calib_pos)
rot_cal = self._calib_rot_inv * raw_rot
self._enabled = enable
return {
"phone.pos": pos_cal,
"phone.rot": rot_cal,
"phone.raw_inputs": raw_inputs,
"phone.enabled": self._enabled,
}
def disconnect(self) -> None:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self._teleop = None
if self._teleop_thread and self._teleop_thread.is_alive():
self._teleop_thread.join(timeout=1.0)
self._teleop_thread = None
self._latest_pose = None
class Phone(Teleoperator):
"""
Phone-based teleoperator using ARKit (iOS via HEBI Mobile I/O App) or the teleop Python package (Android via WebXR API).
For HEBI Mobile I/O we also expose 8 analog (a1-a8) and 8 digital (b1-b8) inputs.
Press and hold **B1** to enable teleoperation. While enabled, the first B1 press
captures a reference pose and rotation, when disabled and pressed again the position is reapplied.
"""
config_class = PhoneConfig
name = "phone"
def __init__(self, config: PhoneConfig):
super().__init__(config)
self.config = config
self._phone_impl: Teleoperator
if self.config.phone_os == PhoneOS.IOS:
self._phone_impl = IOSPhone(config)
elif self.config.phone_os == PhoneOS.ANDROID:
self._phone_impl = AndroidPhone(config)
else:
raise ValueError(f"Invalid config phone_os: {self.config.phone_os}")
@property
def is_connected(self) -> bool:
return self._phone_impl.is_connected
def connect(self) -> None:
return self._phone_impl.connect()
def calibrate(self) -> None:
return self._phone_impl.calibrate()
@property
def is_calibrated(self) -> bool:
return self._phone_impl.is_calibrated
@property
def action_features(self) -> dict[str, type]:
return self._phone_impl.action_features
@property
def feedback_features(self) -> dict[str, type]:
return self._phone_impl.feedback_features
def configure(self) -> None:
return self._phone_impl.configure()
def get_action(self) -> dict:
return self._phone_impl.get_action()
def send_feedback(self, feedback: dict[str, float]) -> None:
return self._phone_impl.send_feedback(feedback)
def disconnect(self) -> None:
return self._phone_impl.disconnect()

View File

@@ -12,10 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from enum import Enum
from .config import TeleoperatorConfig
from .teleoperator import Teleoperator
class TeleopEvents(Enum):
"""Shared constants for teleoperator events across teleoperators."""
SUCCESS = "success"
FAILURE = "failure"
RERECORD_EPISODE = "rerecord_episode"
IS_INTERVENTION = "is_intervention"
TERMINATE_EPISODE = "terminate_episode"
def make_teleoperator_from_config(config: TeleoperatorConfig) -> Teleoperator:
if config.type == "keyboard":
from .keyboard import KeyboardTeleop

View File

@@ -22,6 +22,7 @@ import traceback
from contextlib import nullcontext
from copy import copy
from functools import cache
from typing import Any
import numpy as np
import torch
@@ -31,10 +32,25 @@ from termcolor import colored
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.datasets.utils import DEFAULT_FEATURES
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
from lerobot.robots import Robot
def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, fps=None):
"""
Logs performance metrics for a single step of the robot control loop.
This function formats and prints a single line of log information, including episode/frame counters,
total loop time (dt), and detailed timings for various robot and camera operations. It can also
highlight performance drops in yellow if the actual FPS is lower than the target FPS.
Args:
robot: The `Robot` instance, used to access its internal logs for detailed timings.
dt_s: The total duration of the control loop step in seconds.
episode_index: The index of the current episode.
frame_index: The index of the current frame within the episode.
fps: The target frames per second, used to check for performance degradation.
"""
log_items = []
if episode_index is not None:
log_items.append(f"ep:{episode_index}")
@@ -80,7 +96,16 @@ def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, f
@cache
def is_headless():
"""Detects if python is running without a monitor."""
"""
Detects if the Python script is running in a headless environment (e.g., without a display).
This function attempts to import `pynput`, a library that requires a graphical environment.
If the import fails, it assumes the environment is headless. The result is cached to avoid
re-running the check.
Returns:
True if the environment is determined to be headless, False otherwise.
"""
try:
import pynput # noqa
@@ -101,10 +126,35 @@ def predict_action(
observation: dict[str, np.ndarray],
policy: PreTrainedPolicy,
device: torch.device,
preprocessor: PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
postprocessor: PolicyProcessorPipeline[PolicyAction, PolicyAction],
use_amp: bool,
task: str | None = None,
robot_type: str | None = None,
):
"""
Performs a single-step inference to predict a robot action from an observation.
This function encapsulates the full inference pipeline:
1. Prepares the observation by converting it to PyTorch tensors and adding a batch dimension.
2. Runs the preprocessor pipeline on the observation.
3. Feeds the processed observation to the policy to get a raw action.
4. Runs the postprocessor pipeline on the raw action.
5. Formats the final action by removing the batch dimension and moving it to the CPU.
Args:
observation: A dictionary of NumPy arrays representing the robot's current observation.
policy: The `PreTrainedPolicy` model to use for action prediction.
device: The `torch.device` (e.g., 'cuda' or 'cpu') to run inference on.
preprocessor: The `PolicyProcessorPipeline` for preprocessing observations.
postprocessor: The `PolicyProcessorPipeline` for postprocessing actions.
use_amp: A boolean to enable/disable Automatic Mixed Precision for CUDA inference.
task: An optional string identifier for the task.
robot_type: An optional string identifier for the robot type.
Returns:
A `torch.Tensor` containing the predicted action, ready for the robot.
"""
observation = copy(observation)
with (
torch.inference_mode(),
@@ -122,10 +172,14 @@ def predict_action(
observation["task"] = task if task else ""
observation["robot_type"] = robot_type if robot_type else ""
observation = preprocessor(observation)
# Compute the next action with the policy
# based on the current observation
action = policy.select_action(observation)
action = postprocessor(action)
# Remove batch dimension
action = action.squeeze(0)
@@ -136,6 +190,18 @@ def predict_action(
def init_keyboard_listener():
"""
Initializes a non-blocking keyboard listener for real-time user interaction.
This function sets up a listener for specific keys (right arrow, left arrow, escape) to control
the program flow during execution, such as stopping recording or exiting loops. It gracefully
handles headless environments where keyboard listening is not possible.
Returns:
A tuple containing:
- The `pynput.keyboard.Listener` instance, or `None` if in a headless environment.
- A dictionary of event flags (e.g., `exit_early`) that are set by key presses.
"""
# Allow to exit early while recording an episode or resetting the environment,
# by tapping the right arrow key '->'. This might require a sudo permission
# to allow your terminal to monitor keyboard events.
@@ -177,6 +243,19 @@ def init_keyboard_listener():
def sanity_check_dataset_name(repo_id, policy_cfg):
"""
Validates the dataset repository name against the presence of a policy configuration.
This function enforces a naming convention: a dataset repository ID should start with "eval_"
if and only if a policy configuration is provided for evaluation purposes.
Args:
repo_id: The Hugging Face Hub repository ID of the dataset.
policy_cfg: The configuration object for the policy, or `None`.
Raises:
ValueError: If the naming convention is violated.
"""
_, dataset_name = repo_id.split("/")
# either repo_id doesnt start with "eval_" and there is no policy
# or repo_id starts with "eval_" and there is a policy
@@ -197,6 +276,21 @@ def sanity_check_dataset_name(repo_id, policy_cfg):
def sanity_check_dataset_robot_compatibility(
dataset: LeRobotDataset, robot: Robot, fps: int, features: dict
) -> None:
"""
Checks if a dataset's metadata is compatible with the current robot and recording setup.
This function compares key metadata fields (`robot_type`, `fps`, and `features`) from the
dataset against the current configuration to ensure that appended data will be consistent.
Args:
dataset: The `LeRobotDataset` instance to check.
robot: The `Robot` instance representing the current hardware setup.
fps: The current recording frequency (frames per second).
features: The dictionary of features for the current recording session.
Raises:
ValueError: If any of the checked metadata fields do not match.
"""
fields = [
("robot_type", dataset.meta.robot_type, robot.robot_type),
("fps", dataset.fps, fps),

View File

@@ -58,6 +58,7 @@ def is_package_available(pkg_name: str, return_version: bool = False) -> tuple[b
_torch_available, _torch_version = is_package_available("torch", return_version=True)
_transformers_available = is_package_available("transformers")
_gym_xarm_available = is_package_available("gym_xarm")
_gym_aloha_available = is_package_available("gym_aloha")
_gym_pusht_available = is_package_available("gym_pusht")

View File

@@ -0,0 +1,270 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Custom rotation utilities to replace scipy.spatial.transform.Rotation."""
import numpy as np
class Rotation:
"""
Custom rotation class that provides a subset of scipy.spatial.transform.Rotation functionality.
Supports conversions between rotation vectors, rotation matrices, and quaternions.
"""
def __init__(self, quat: np.ndarray) -> None:
"""Initialize rotation from quaternion [x, y, z, w]."""
self._quat = np.asarray(quat, dtype=float)
# Normalize quaternion
norm = np.linalg.norm(self._quat)
if norm > 0:
self._quat = self._quat / norm
@classmethod
def from_rotvec(cls, rotvec: np.ndarray) -> "Rotation":
"""
Create rotation from rotation vector using Rodrigues' formula.
Args:
rotvec: Rotation vector [x, y, z] where magnitude is angle in radians
Returns:
Rotation instance
"""
rotvec = np.asarray(rotvec, dtype=float)
angle = np.linalg.norm(rotvec)
if angle < 1e-8:
# For very small angles, use identity quaternion
quat = np.array([0.0, 0.0, 0.0, 1.0])
else:
axis = rotvec / angle
half_angle = angle / 2.0
sin_half = np.sin(half_angle)
cos_half = np.cos(half_angle)
# Quaternion [x, y, z, w]
quat = np.array([axis[0] * sin_half, axis[1] * sin_half, axis[2] * sin_half, cos_half])
return cls(quat)
@classmethod
def from_matrix(cls, matrix: np.ndarray) -> "Rotation":
"""
Create rotation from 3x3 rotation matrix.
Args:
matrix: 3x3 rotation matrix
Returns:
Rotation instance
"""
matrix = np.asarray(matrix, dtype=float)
# Shepherd's method for converting rotation matrix to quaternion
trace = np.trace(matrix)
if trace > 0:
s = np.sqrt(trace + 1.0) * 2 # s = 4 * qw
qw = 0.25 * s
qx = (matrix[2, 1] - matrix[1, 2]) / s
qy = (matrix[0, 2] - matrix[2, 0]) / s
qz = (matrix[1, 0] - matrix[0, 1]) / s
elif matrix[0, 0] > matrix[1, 1] and matrix[0, 0] > matrix[2, 2]:
s = np.sqrt(1.0 + matrix[0, 0] - matrix[1, 1] - matrix[2, 2]) * 2 # s = 4 * qx
qw = (matrix[2, 1] - matrix[1, 2]) / s
qx = 0.25 * s
qy = (matrix[0, 1] + matrix[1, 0]) / s
qz = (matrix[0, 2] + matrix[2, 0]) / s
elif matrix[1, 1] > matrix[2, 2]:
s = np.sqrt(1.0 + matrix[1, 1] - matrix[0, 0] - matrix[2, 2]) * 2 # s = 4 * qy
qw = (matrix[0, 2] - matrix[2, 0]) / s
qx = (matrix[0, 1] + matrix[1, 0]) / s
qy = 0.25 * s
qz = (matrix[1, 2] + matrix[2, 1]) / s
else:
s = np.sqrt(1.0 + matrix[2, 2] - matrix[0, 0] - matrix[1, 1]) * 2 # s = 4 * qz
qw = (matrix[1, 0] - matrix[0, 1]) / s
qx = (matrix[0, 2] + matrix[2, 0]) / s
qy = (matrix[1, 2] + matrix[2, 1]) / s
qz = 0.25 * s
quat = np.array([qx, qy, qz, qw])
return cls(quat)
@classmethod
def from_quat(cls, quat: np.ndarray) -> "Rotation":
"""
Create rotation from quaternion.
Args:
quat: Quaternion [x, y, z, w] or [w, x, y, z] (specify convention in docstring)
This implementation expects [x, y, z, w] format
Returns:
Rotation instance
"""
return cls(quat)
def as_matrix(self) -> np.ndarray:
"""
Convert rotation to 3x3 rotation matrix.
Returns:
3x3 rotation matrix
"""
qx, qy, qz, qw = self._quat
# Compute rotation matrix from quaternion
return np.array(
[
[1 - 2 * (qy * qy + qz * qz), 2 * (qx * qy - qz * qw), 2 * (qx * qz + qy * qw)],
[2 * (qx * qy + qz * qw), 1 - 2 * (qx * qx + qz * qz), 2 * (qy * qz - qx * qw)],
[2 * (qx * qz - qy * qw), 2 * (qy * qz + qx * qw), 1 - 2 * (qx * qx + qy * qy)],
],
dtype=float,
)
def as_rotvec(self) -> np.ndarray:
"""
Convert rotation to rotation vector.
Returns:
Rotation vector [x, y, z] where magnitude is angle in radians
"""
qx, qy, qz, qw = self._quat
# Ensure qw is positive for unique representation
if qw < 0:
qx, qy, qz, qw = -qx, -qy, -qz, -qw
# Compute angle and axis
angle = 2.0 * np.arccos(np.clip(abs(qw), 0.0, 1.0))
sin_half_angle = np.sqrt(1.0 - qw * qw)
if sin_half_angle < 1e-8:
# For very small angles, use linearization: rotvec ≈ 2 * [qx, qy, qz]
return 2.0 * np.array([qx, qy, qz])
# Extract axis and scale by angle
axis = np.array([qx, qy, qz]) / sin_half_angle
return angle * axis
def as_quat(self) -> np.ndarray:
"""
Get quaternion representation.
Returns:
Quaternion [x, y, z, w]
"""
return self._quat.copy()
def apply(self, vectors: np.ndarray, inverse: bool = False) -> np.ndarray:
"""
Apply this rotation to a set of vectors.
This is equivalent to applying the rotation matrix to the vectors:
self.as_matrix() @ vectors (or self.as_matrix().T @ vectors if inverse=True).
Args:
vectors: Array of shape (3,) or (N, 3) representing vectors in 3D space
inverse: If True, apply the inverse of the rotation. Default is False.
Returns:
Rotated vectors with shape:
- (3,) if input was single vector with shape (3,)
- (N, 3) in all other cases
"""
vectors = np.asarray(vectors, dtype=float)
original_shape = vectors.shape
# Handle single vector case - ensure it's 2D for matrix multiplication
if vectors.ndim == 1:
if len(vectors) != 3:
raise ValueError("Single vector must have length 3")
vectors = vectors.reshape(1, 3)
single_vector = True
elif vectors.ndim == 2:
if vectors.shape[1] != 3:
raise ValueError("Vectors must have shape (N, 3)")
single_vector = False
else:
raise ValueError("Vectors must be 1D or 2D array")
# Get rotation matrix
rotation_matrix = self.as_matrix()
# Apply inverse if requested (transpose for orthogonal rotation matrices)
if inverse:
rotation_matrix = rotation_matrix.T
# Apply rotation: (N, 3) @ (3, 3).T -> (N, 3)
rotated_vectors = vectors @ rotation_matrix.T
# Return original shape for single vector case
if single_vector and original_shape == (3,):
return rotated_vectors.flatten()
return rotated_vectors
def inv(self) -> "Rotation":
"""
Invert this rotation.
Composition of a rotation with its inverse results in an identity transformation.
Returns:
Rotation instance containing the inverse of this rotation
"""
qx, qy, qz, qw = self._quat
# For a unit quaternion, the inverse is the conjugate: [-x, -y, -z, w]
inverse_quat = np.array([-qx, -qy, -qz, qw])
return Rotation(inverse_quat)
def __mul__(self, other: "Rotation") -> "Rotation":
"""
Compose this rotation with another rotation using the * operator.
The composition `r2 * r1` means "apply r1 first, then r2".
This is equivalent to applying rotation matrices: r2.as_matrix() @ r1.as_matrix()
Args:
other: Another Rotation instance to compose with
Returns:
Rotation instance representing the composition of rotations
"""
if not isinstance(other, Rotation):
return NotImplemented
# Get quaternions [x, y, z, w]
x1, y1, z1, w1 = other._quat # Apply first
x2, y2, z2, w2 = self._quat # Apply second
# Quaternion multiplication: q2 * q1 (apply q1 first, then q2)
composed_quat = np.array(
[
w2 * x1 + x2 * w1 + y2 * z1 - z2 * y1, # x component
w2 * y1 - x2 * z1 + y2 * w1 + z2 * x1, # y component
w2 * z1 + x2 * y1 - y2 * x1 + z2 * w1, # z component
w2 * w1 - x2 * x1 - y2 * y1 - z2 * z1, # w component
]
)
return Rotation(composed_quat)

View File

@@ -32,6 +32,7 @@ from lerobot.datasets.utils import load_json, write_json
from lerobot.optim.optimizers import load_optimizer_state, save_optimizer_state
from lerobot.optim.schedulers import load_scheduler_state, save_scheduler_state
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.processor import PolicyProcessorPipeline
from lerobot.utils.random_utils import load_rng_state, save_rng_state
@@ -74,6 +75,8 @@ def save_checkpoint(
policy: PreTrainedPolicy,
optimizer: Optimizer,
scheduler: LRScheduler | None = None,
preprocessor: PolicyProcessorPipeline | None = None,
postprocessor: PolicyProcessorPipeline | None = None,
) -> None:
"""This function creates the following directory structure:
@@ -81,7 +84,9 @@ def save_checkpoint(
├── pretrained_model/
│ ├── config.json # policy config
│ ├── model.safetensors # policy weights
── train_config.json # train config
── train_config.json # train config
│ ├── processor.json # processor config (if preprocessor provided)
│ └── step_*.safetensors # processor state files (if any)
└── training_state/
├── optimizer_param_groups.json # optimizer param groups
├── optimizer_state.safetensors # optimizer state
@@ -95,10 +100,15 @@ def save_checkpoint(
policy (PreTrainedPolicy): The policy to save.
optimizer (Optimizer | None, optional): The optimizer to save the state from. Defaults to None.
scheduler (LRScheduler | None, optional): The scheduler to save the state from. Defaults to None.
preprocessor: The preprocessor/pipeline to save. Defaults to None.
"""
pretrained_dir = checkpoint_dir / PRETRAINED_MODEL_DIR
policy.save_pretrained(pretrained_dir)
cfg.save_pretrained(pretrained_dir)
if preprocessor is not None:
preprocessor.save_pretrained(pretrained_dir)
if postprocessor is not None:
postprocessor.save_pretrained(pretrained_dir)
save_training_state(checkpoint_dir, step, optimizer, scheduler)

View File

@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
import os
from typing import Any
@@ -28,19 +29,69 @@ def _init_rerun(session_name: str = "lerobot_control_loop") -> None:
rr.spawn(memory_limit=memory_limit)
def log_rerun_data(observation: dict[str | Any], action: dict[str | Any]):
for obs, val in observation.items():
if isinstance(val, float):
rr.log(f"observation.{obs}", rr.Scalar(val))
elif isinstance(val, np.ndarray):
if val.ndim == 1:
for i, v in enumerate(val):
rr.log(f"observation.{obs}_{i}", rr.Scalar(float(v)))
else:
rr.log(f"observation.{obs}", rr.Image(val), static=True)
for act, val in action.items():
if isinstance(val, float):
rr.log(f"action.{act}", rr.Scalar(val))
elif isinstance(val, np.ndarray):
for i, v in enumerate(val):
rr.log(f"action.{act}_{i}", rr.Scalar(float(v)))
def _is_scalar(x):
return (
isinstance(x, float)
or isinstance(x, numbers.Real)
or isinstance(x, (np.integer, np.floating))
or (isinstance(x, np.ndarray) and x.ndim == 0)
)
def log_rerun_data(
observation: dict[str, Any] | None = None,
action: dict[str, Any] | None = None,
) -> None:
"""
Logs observation and action data to Rerun for real-time visualization.
This function iterates through the provided observation and action dictionaries and sends their contents
to the Rerun viewer. It handles different data types appropriately:
- Scalar values (floats, ints) are logged as `rr.Scalar`.
- 3D NumPy arrays that resemble images (e.g., with 1, 3, or 4 channels first) are transposed
from CHW to HWC format and logged as `rr.Image`.
- 1D NumPy arrays are logged as a series of individual scalars, with each element indexed.
- Other multi-dimensional arrays are flattened and logged as individual scalars.
Keys are automatically namespaced with "observation." or "action." if not already present.
Args:
observation: An optional dictionary containing observation data to log.
action: An optional dictionary containing action data to log.
"""
if observation:
for k, v in observation.items():
if v is None:
continue
key = k if str(k).startswith("observation.") else f"observation.{k}"
if _is_scalar(v):
rr.log(key, rr.Scalar(float(v)))
elif isinstance(v, np.ndarray):
arr = v
# Convert CHW -> HWC when needed
if arr.ndim == 3 and arr.shape[0] in (1, 3, 4) and arr.shape[-1] not in (1, 3, 4):
arr = np.transpose(arr, (1, 2, 0))
if arr.ndim == 1:
for i, vi in enumerate(arr):
rr.log(f"{key}_{i}", rr.Scalar(float(vi)))
else:
rr.log(key, rr.Image(arr), static=True)
if action:
for k, v in action.items():
if v is None:
continue
key = k if str(k).startswith("action.") else f"action.{k}"
if _is_scalar(v):
rr.log(key, rr.Scalar(float(v)))
elif isinstance(v, np.ndarray):
if v.ndim == 1:
for i, vi in enumerate(v):
rr.log(f"{key}_{i}", rr.Scalar(float(vi)))
else:
# Fall back to flattening higher-dimensional arrays
flat = v.flatten()
for i, vi in enumerate(flat):
rr.log(f"{key}_{i}", rr.Scalar(float(vi)))