Tests cleaning & simplification (#81)
This commit is contained in:
@@ -1,53 +1,60 @@
|
||||
"""
|
||||
This test verifies that all environments, datasets, policies listed in `lerobot/__init__.py` can be sucessfully
|
||||
imported and that their class attributes (eg. `available_datasets`, `name`, `available_tasks`) are valid.
|
||||
|
||||
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
|
||||
- Set the required class attributes: `available_datasets`.
|
||||
- Set the required class attributes: `name`.
|
||||
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
- Update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
import importlib
|
||||
import pytest
|
||||
import lerobot
|
||||
import gymnasium as gym
|
||||
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
import gymnasium as gym
|
||||
import pytest
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
from lerobot.common.datasets.pusht import PushtDataset
|
||||
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
||||
from tests.utils import require_env
|
||||
|
||||
|
||||
def test_available():
|
||||
@pytest.mark.parametrize("env_name, task_name", lerobot.env_task_pairs)
|
||||
@require_env
|
||||
def test_available_env_task(env_name: str, task_name: list):
|
||||
"""
|
||||
This test verifies that all environments listed in `lerobot/__init__.py` can
|
||||
be sucessfully imported — if they're installed — and that their
|
||||
`available_tasks_per_env` are valid.
|
||||
"""
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
gym_handle = f"{package_name}/{task_name}"
|
||||
assert gym_handle in gym.envs.registry, gym_handle
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, dataset_class",
|
||||
[
|
||||
("aloha", AlohaDataset),
|
||||
("pusht", PushtDataset),
|
||||
("xarm", XarmDataset),
|
||||
],
|
||||
)
|
||||
def test_available_datasets(env_name, dataset_class):
|
||||
"""
|
||||
This test verifies that the class attribute `available_datasets` for all
|
||||
dataset classes is consistent with those listed in `lerobot/__init__.py`.
|
||||
"""
|
||||
available_env_datasets = lerobot.available_datasets[env_name]
|
||||
assert set(available_env_datasets) == set(
|
||||
dataset_class.available_datasets
|
||||
), f"{env_name=} {available_env_datasets=}"
|
||||
|
||||
|
||||
def test_available_policies():
|
||||
"""
|
||||
This test verifies that the class attribute `name` for all policies is
|
||||
consistent with those listed in `lerobot/__init__.py`.
|
||||
"""
|
||||
policy_classes = [
|
||||
ActionChunkingTransformerPolicy,
|
||||
DiffusionPolicy,
|
||||
TDMPCPolicy,
|
||||
]
|
||||
|
||||
dataset_class_per_env = {
|
||||
"aloha": AlohaDataset,
|
||||
"pusht": PushtDataset,
|
||||
"xarm": XarmDataset,
|
||||
}
|
||||
|
||||
policies = [pol_cls.name for pol_cls in policy_classes]
|
||||
assert set(policies) == set(lerobot.available_policies), policies
|
||||
|
||||
for env_name in lerobot.available_envs:
|
||||
for task_name in lerobot.available_tasks_per_env[env_name]:
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
gym_handle = f"{package_name}/{task_name}"
|
||||
assert gym_handle in gym.envs.registry.keys(), gym_handle
|
||||
|
||||
dataset_class = dataset_class_per_env[env_name]
|
||||
available_datasets = lerobot.available_datasets_per_env[env_name]
|
||||
assert set(available_datasets) == set(dataset_class.available_datasets), f"{env_name=} {available_datasets=}"
|
||||
|
||||
|
||||
|
||||
@@ -1,33 +1,35 @@
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.utils import compute_stats, get_stats_einops_patterns, load_previous_and_future_frames
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
import logging
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from datasets import Dataset
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,dataset_id,policy_name",
|
||||
[
|
||||
("xarm", "xarm_lift_medium", "tdmpc"),
|
||||
("pusht", "pusht", "diffusion"),
|
||||
("aloha", "aloha_sim_insertion_human", "act"),
|
||||
("aloha", "aloha_sim_insertion_scripted", "act"),
|
||||
("aloha", "aloha_sim_transfer_cube_human", "act"),
|
||||
("aloha", "aloha_sim_transfer_cube_scripted", "act"),
|
||||
],
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
compute_stats,
|
||||
get_stats_einops_patterns,
|
||||
load_previous_and_future_frames,
|
||||
)
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||
|
||||
|
||||
@pytest.mark.parametrize("env_name, dataset_id, policy_name", lerobot.env_dataset_policy_triplets)
|
||||
def test_factory(env_name, dataset_id, policy_name):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[f"env={env_name}", f"dataset_id={dataset_id}", f"policy={policy_name}", f"device={DEVICE}"]
|
||||
overrides=[
|
||||
f"env={env_name}",
|
||||
f"dataset_id={dataset_id}",
|
||||
f"policy={policy_name}",
|
||||
f"device={DEVICE}",
|
||||
],
|
||||
)
|
||||
dataset = make_dataset(cfg)
|
||||
delta_timestamps = dataset.delta_timestamps
|
||||
@@ -51,7 +53,7 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
(key, 3, True),
|
||||
)
|
||||
assert dataset.hf_dataset[key].dtype == torch.uint8, f"{key}"
|
||||
|
||||
|
||||
# test number of dimensions
|
||||
for key, ndim, required in keys_ndim_required:
|
||||
if key not in item:
|
||||
@@ -60,13 +62,13 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
else:
|
||||
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
|
||||
continue
|
||||
|
||||
|
||||
if delta_timestamps is not None and key in delta_timestamps:
|
||||
assert item[key].ndim == ndim + 1, f"{key}"
|
||||
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
|
||||
else:
|
||||
assert item[key].ndim == ndim, f"{key}"
|
||||
|
||||
|
||||
if key in image_keys:
|
||||
assert item[key].dtype == torch.float32, f"{key}"
|
||||
# TODO(rcadene): we assume for now that image normalization takes place in the model
|
||||
@@ -77,17 +79,16 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
# test t,c,h,w
|
||||
assert item[key].shape[1] == 3, f"{key}"
|
||||
else:
|
||||
# test c,h,w
|
||||
# test c,h,w
|
||||
assert item[key].shape[0] == 3, f"{key}"
|
||||
|
||||
|
||||
if delta_timestamps is not None:
|
||||
# test missing keys in delta_timestamps
|
||||
for key in delta_timestamps:
|
||||
assert key in item, f"{key}"
|
||||
|
||||
|
||||
def test_compute_stats():
|
||||
def test_compute_stats_on_xarm():
|
||||
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
|
||||
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
@@ -95,20 +96,20 @@ def test_compute_stats():
|
||||
"""
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
data_dir = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
|
||||
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
||||
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
||||
|
||||
dataset = XarmDataset(
|
||||
dataset_id="xarm_lift_medium",
|
||||
root=DATA_DIR,
|
||||
root=data_dir,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# dataset into even batches.
|
||||
# dataset into even batches.
|
||||
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
|
||||
|
||||
# get einops patterns to aggregate batches and compute statistics
|
||||
@@ -128,7 +129,9 @@ def test_compute_stats():
|
||||
for k, pattern in stats_patterns.items():
|
||||
expected_stats[k] = {}
|
||||
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
|
||||
expected_stats[k]["std"] = torch.sqrt(einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean"))
|
||||
expected_stats[k]["std"] = torch.sqrt(
|
||||
einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
)
|
||||
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
|
||||
|
||||
@@ -153,12 +156,14 @@ def test_compute_stats():
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_within_tolerance():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
||||
@@ -168,13 +173,16 @@ def test_load_previous_and_future_frames_within_tolerance():
|
||||
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
|
||||
assert not is_pad.any(), "Unexpected padding detected"
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
||||
@@ -182,13 +190,16 @@ def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(
|
||||
with pytest.raises(AssertionError):
|
||||
load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
||||
@@ -196,6 +207,6 @@ def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range
|
||||
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), "Padding does not match expected values"
|
||||
|
||||
|
||||
assert torch.equal(
|
||||
is_pad, torch.tensor([True, False, False, True, True])
|
||||
), "Padding does not match expected values"
|
||||
|
||||
@@ -1,49 +1,37 @@
|
||||
import importlib
|
||||
|
||||
import gymnasium as gym
|
||||
import pytest
|
||||
import torch
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
import gymnasium as gym
|
||||
from gymnasium.utils.env_checker import check_env
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
from lerobot.common.envs.utils import preprocess_observation
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||
|
||||
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, task, obs_type",
|
||||
[
|
||||
# ("AlohaInsertion-v0", "state"),
|
||||
("aloha", "AlohaInsertion-v0", "pixels"),
|
||||
("aloha", "AlohaInsertion-v0", "pixels_agent_pos"),
|
||||
("aloha", "AlohaTransferCube-v0", "pixels"),
|
||||
("aloha", "AlohaTransferCube-v0", "pixels_agent_pos"),
|
||||
("xarm", "XarmLift-v0", "state"),
|
||||
("xarm", "XarmLift-v0", "pixels"),
|
||||
("xarm", "XarmLift-v0", "pixels_agent_pos"),
|
||||
("pusht", "PushT-v0", "state"),
|
||||
("pusht", "PushT-v0", "pixels"),
|
||||
("pusht", "PushT-v0", "pixels_agent_pos"),
|
||||
],
|
||||
)
|
||||
def test_env(env_name, task, obs_type):
|
||||
@pytest.mark.parametrize("obs_type", OBS_TYPES)
|
||||
@pytest.mark.parametrize("env_name, env_task", lerobot.env_task_pairs)
|
||||
@require_env
|
||||
def test_env(env_name, env_task, obs_type):
|
||||
if env_name == "aloha" and obs_type == "state":
|
||||
pytest.skip("`state` observations not available for aloha")
|
||||
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
env = gym.make(f"{package_name}/{task}", obs_type=obs_type)
|
||||
env = gym.make(f"{package_name}/{env_task}", obs_type=obs_type)
|
||||
check_env(env.unwrapped, skip_render_check=True)
|
||||
env.close()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name",
|
||||
[
|
||||
"pusht",
|
||||
"xarm",
|
||||
"aloha",
|
||||
],
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize("env_name", lerobot.available_envs)
|
||||
@require_env
|
||||
def test_factory(env_name):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from pathlib import Path
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
|
||||
@@ -10,7 +10,7 @@ def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> s
|
||||
|
||||
|
||||
def _run_script(path):
|
||||
subprocess.run(['python', path], check=True)
|
||||
subprocess.run(["python", path], check=True)
|
||||
|
||||
|
||||
def test_example_1():
|
||||
@@ -33,7 +33,7 @@ def test_examples_4_and_3():
|
||||
|
||||
path = "examples/4_train_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
with open(path) as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less steps, use smaller batch, use CPU, and don't complicate things with dataloader workers.
|
||||
@@ -55,7 +55,7 @@ def test_examples_4_and_3():
|
||||
|
||||
path = "examples/3_evaluate_pretrained_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
with open(path) as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less evals, use CPU, and use the local model.
|
||||
@@ -74,4 +74,4 @@ def test_examples_4_and_3():
|
||||
],
|
||||
)
|
||||
|
||||
assert Path(f"outputs/train/example_pusht_diffusion").exists()
|
||||
assert Path("outputs/train/example_pusht_diffusion").exists()
|
||||
|
||||
@@ -1,16 +1,18 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.utils import cycle
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.policy_protocol import Policy
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||
|
||||
|
||||
# TODO(aliberts): refactor using lerobot/__init__.py variables
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,policy_name,extra_overrides",
|
||||
[
|
||||
@@ -21,10 +23,9 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
("aloha", "act", ["env.task=AlohaInsertion-v0", "dataset_id=aloha_sim_insertion_scripted"]),
|
||||
("aloha", "act", ["env.task=AlohaTransferCube-v0", "dataset_id=aloha_sim_transfer_cube_human"]),
|
||||
("aloha", "act", ["env.task=AlohaTransferCube-v0", "dataset_id=aloha_sim_transfer_cube_scripted"]),
|
||||
# TODO(aliberts): xarm not working with diffusion
|
||||
# ("xarm", "diffusion", []),
|
||||
],
|
||||
)
|
||||
@require_env
|
||||
def test_policy(env_name, policy_name, extra_overrides):
|
||||
"""
|
||||
Tests:
|
||||
|
||||
@@ -1,6 +1,37 @@
|
||||
import os
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.utils.import_utils import is_package_available
|
||||
|
||||
# Pass this as the first argument to init_hydra_config.
|
||||
DEFAULT_CONFIG_PATH = "lerobot/configs/default.yaml"
|
||||
|
||||
DEVICE = os.environ.get('LEROBOT_TESTS_DEVICE', "cuda")
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def require_env(func):
|
||||
"""
|
||||
Decorator that skips the test if the required environment package is not installed.
|
||||
As it need 'env_name' in args, it also checks whether it is provided as an argument.
|
||||
"""
|
||||
from functools import wraps
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
# Determine if 'env_name' is provided and extract its value
|
||||
arg_names = func.__code__.co_varnames[: func.__code__.co_argcount]
|
||||
if "env_name" in arg_names:
|
||||
# Get the index of 'env_name' and retrieve the value from args
|
||||
index = arg_names.index("env_name")
|
||||
env_name = args[index] if len(args) > index else kwargs.get("env_name")
|
||||
else:
|
||||
raise ValueError("Function does not have 'env_name' as an argument.")
|
||||
|
||||
# Perform the package check
|
||||
package_name = f"gym_{env_name}"
|
||||
if not is_package_available(package_name):
|
||||
pytest.skip(f"gym-{env_name} not installed")
|
||||
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
Reference in New Issue
Block a user