fix stats computation

This commit is contained in:
Alexander Soare
2024-04-02 16:40:33 +01:00
parent 11cbf1bea1
commit 95293d459d
2 changed files with 78 additions and 31 deletions

View File

@@ -1,5 +1,8 @@
import einops
import pytest
import torch
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SamplerWithoutReplacement
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.utils import init_hydra_config
@@ -30,3 +33,30 @@ def test_factory(env_name, dataset_id):
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
def test_compute_stats():
"""Check that the correct statistics are computed.
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
because we are working with a small dataset).
This test does not check that the stats_patterns are correct (instead, it relies on them).
"""
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH, overrides=["env=aloha", "env.task=sim_transfer_cube_human"]
)
buffer = make_offline_buffer(cfg)
# Get all of the data.
all_data = TensorDictReplayBuffer(
storage=buffer._storage,
batch_size=len(buffer),
sampler=SamplerWithoutReplacement(),
).sample().float()
computed_stats = buffer._compute_stats()
for k, pattern in buffer.stats_patterns.items():
expected_mean = einops.reduce(all_data[k], pattern, "mean")
assert torch.allclose(computed_stats[k]["mean"], expected_mean)
assert torch.allclose(computed_stats[k]["std"], torch.sqrt(einops.reduce((all_data[k] - expected_mean) ** 2, pattern, "mean")))
assert torch.allclose(computed_stats[k]["min"], einops.reduce(all_data[k], pattern, "min"))
assert torch.allclose(computed_stats[k]["max"], einops.reduce(all_data[k], pattern, "max"))