Organize test folders (#856)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
147
tests/examples/test_examples.py
Normal file
147
tests/examples/test_examples.py
Normal file
@@ -0,0 +1,147 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import io
|
||||
import subprocess
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.fixtures.constants import DUMMY_REPO_ID
|
||||
from tests.utils import require_package
|
||||
|
||||
|
||||
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
|
||||
for f, r in finds_and_replaces:
|
||||
assert f in text
|
||||
text = text.replace(f, r)
|
||||
return text
|
||||
|
||||
|
||||
# TODO(aliberts): Remove usage of subprocess calls and patch code with fixtures
|
||||
def _run_script(path):
|
||||
subprocess.run([sys.executable, path], check=True)
|
||||
|
||||
|
||||
def _read_file(path):
|
||||
with open(path) as file:
|
||||
return file.read()
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO Fix and remove subprocess / excec calls")
|
||||
def test_example_1(tmp_path, lerobot_dataset_factory):
|
||||
_ = lerobot_dataset_factory(root=tmp_path, repo_id=DUMMY_REPO_ID)
|
||||
path = "examples/1_load_lerobot_dataset.py"
|
||||
file_contents = _read_file(path)
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
[
|
||||
('repo_id = "lerobot/pusht"', f'repo_id = "{DUMMY_REPO_ID}"'),
|
||||
(
|
||||
"LeRobotDataset(repo_id",
|
||||
f"LeRobotDataset(repo_id, root='{str(tmp_path)}'",
|
||||
),
|
||||
],
|
||||
)
|
||||
exec(file_contents, {})
|
||||
assert Path("outputs/examples/1_load_lerobot_dataset/episode_0.mp4").exists()
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO Fix and remove subprocess / excec calls")
|
||||
@require_package("gym_pusht")
|
||||
def test_examples_basic2_basic3_advanced1():
|
||||
"""
|
||||
Train a model with example 3, check the outputs.
|
||||
Evaluate the trained model with example 2, check the outputs.
|
||||
Calculate the validation loss with advanced example 1, check the outputs.
|
||||
"""
|
||||
|
||||
### Test example 3
|
||||
file_contents = _read_file("examples/3_train_policy.py")
|
||||
|
||||
# Do fewer steps, use smaller batch, use CPU, and don't complicate things with dataloader workers.
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
[
|
||||
("training_steps = 5000", "training_steps = 1"),
|
||||
("num_workers=4", "num_workers=0"),
|
||||
('device = torch.device("cuda")', 'device = torch.device("cpu")'),
|
||||
("batch_size=64", "batch_size=1"),
|
||||
],
|
||||
)
|
||||
|
||||
# Pass empty globals to allow dictionary comprehension https://stackoverflow.com/a/32897127/4391249.
|
||||
exec(file_contents, {})
|
||||
|
||||
for file_name in ["model.safetensors", "config.json"]:
|
||||
assert Path(f"outputs/train/example_pusht_diffusion/{file_name}").exists()
|
||||
|
||||
### Test example 2
|
||||
file_contents = _read_file("examples/2_evaluate_pretrained_policy.py")
|
||||
|
||||
# Do fewer evals, use CPU, and use the local model.
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
[
|
||||
(
|
||||
'pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))',
|
||||
"",
|
||||
),
|
||||
(
|
||||
'# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")',
|
||||
'pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")',
|
||||
),
|
||||
('device = torch.device("cuda")', 'device = torch.device("cpu")'),
|
||||
("step += 1", "break"),
|
||||
],
|
||||
)
|
||||
|
||||
exec(file_contents, {})
|
||||
|
||||
assert Path("outputs/eval/example_pusht_diffusion/rollout.mp4").exists()
|
||||
|
||||
## Test example 4
|
||||
file_contents = _read_file("examples/advanced/2_calculate_validation_loss.py")
|
||||
|
||||
# Run on a single example from the last episode, use CPU, and use the local model.
|
||||
file_contents = _find_and_replace(
|
||||
file_contents,
|
||||
[
|
||||
(
|
||||
'pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))',
|
||||
"",
|
||||
),
|
||||
(
|
||||
'# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")',
|
||||
'pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")',
|
||||
),
|
||||
("train_episodes = episodes[:num_train_episodes]", "train_episodes = [0]"),
|
||||
("val_episodes = episodes[num_train_episodes:]", "val_episodes = [1]"),
|
||||
("num_workers=4", "num_workers=0"),
|
||||
('device = torch.device("cuda")', 'device = torch.device("cpu")'),
|
||||
("batch_size=64", "batch_size=1"),
|
||||
],
|
||||
)
|
||||
|
||||
# Capture the output of the script
|
||||
output_buffer = io.StringIO()
|
||||
sys.stdout = output_buffer
|
||||
exec(file_contents, {})
|
||||
printed_output = output_buffer.getvalue()
|
||||
# Restore stdout to its original state
|
||||
sys.stdout = sys.__stdout__
|
||||
assert "Average loss on validation set" in printed_output
|
||||
Reference in New Issue
Block a user