enable test_compute_stats
enable test_compute_stats
This commit is contained in:
@@ -1,6 +1,12 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import einops
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.utils import compute_stats, get_stats_einops_patterns
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
import logging
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
@@ -81,28 +87,58 @@ def test_factory(env_name, dataset_id, policy_name):
|
||||
assert key in item, f"{key}"
|
||||
|
||||
|
||||
# def test_compute_stats():
|
||||
# """Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
def test_compute_stats():
|
||||
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
|
||||
# We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
# because we are working with a small dataset).
|
||||
# """
|
||||
# cfg = init_hydra_config(
|
||||
# DEFAULT_CONFIG_PATH, overrides=["env=aloha", "env.task=sim_transfer_cube_human"]
|
||||
# )
|
||||
# dataset = make_dataset(cfg)
|
||||
# # Get all of the data.
|
||||
# all_data = dataset.data_dict
|
||||
# # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# # computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# # dataset into even batches.
|
||||
# computed_stats = buffer._compute_stats(batch_size=int(len(all_data) * 0.75))
|
||||
# for k, pattern in buffer.stats_patterns.items():
|
||||
# expected_mean = einops.reduce(all_data[k], pattern, "mean")
|
||||
# assert torch.allclose(computed_stats[k]["mean"], expected_mean)
|
||||
# assert torch.allclose(
|
||||
# computed_stats[k]["std"],
|
||||
# torch.sqrt(einops.reduce((all_data[k] - expected_mean) ** 2, pattern, "mean"))
|
||||
# )
|
||||
# assert torch.allclose(computed_stats[k]["min"], einops.reduce(all_data[k], pattern, "min"))
|
||||
# assert torch.allclose(computed_stats[k]["max"], einops.reduce(all_data[k], pattern, "max"))
|
||||
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
because we are working with a small dataset).
|
||||
"""
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
|
||||
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
||||
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
||||
|
||||
dataset = XarmDataset(
|
||||
dataset_id="xarm_lift_medium",
|
||||
root=DATA_DIR,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# dataset into even batches.
|
||||
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
|
||||
|
||||
# get einops patterns to aggregate batches and compute statistics
|
||||
stats_patterns = get_stats_einops_patterns(dataset)
|
||||
|
||||
# get all frames from the dataset in the same dtype and range as during compute_stats
|
||||
data_dict = transform(dataset.data_dict)
|
||||
|
||||
# compute stats based on all frames from the dataset without any batching
|
||||
expected_stats = {}
|
||||
for k, pattern in stats_patterns.items():
|
||||
expected_stats[k] = {}
|
||||
expected_stats[k]["mean"] = einops.reduce(data_dict[k], pattern, "mean")
|
||||
expected_stats[k]["std"] = torch.sqrt(einops.reduce((data_dict[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean"))
|
||||
expected_stats[k]["min"] = einops.reduce(data_dict[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(data_dict[k], pattern, "max")
|
||||
|
||||
# test computed stats match expected stats
|
||||
for k in stats_patterns:
|
||||
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
|
||||
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
|
||||
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
# TODO(rcadene): check that the stats used for training are correct too
|
||||
# # load stats that are expected to match the ones returned by computed_stats
|
||||
# assert (dataset.data_dir / "stats.pth").exists()
|
||||
# loaded_stats = torch.load(dataset.data_dir / "stats.pth")
|
||||
|
||||
# # test loaded stats match expected stats
|
||||
# for k in stats_patterns:
|
||||
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
|
||||
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
|
||||
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
Reference in New Issue
Block a user