This commit is contained in:
Remi Cadene
2024-08-06 17:17:07 +03:00
parent 1da5caaf4b
commit 9ddbbd8e80
14 changed files with 162 additions and 140 deletions

View File

@@ -13,6 +13,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Save the policy tests artifacts.
Note: Run on the cluster
Example of usage:
```bash
DATA_DIR=tests/data python tests/scripts/save_policy_to_safetensors.py
```
"""
import platform
import shutil
from pathlib import Path
@@ -54,7 +66,7 @@ def get_policy_stats(env_name, policy_name, extra_overrides):
output_dict = {k: v for k, v in output_dict.items() if isinstance(v, torch.Tensor)}
loss = output_dict["loss"]
loss.backward()
loss.mean().backward()
grad_stats = {}
for key, param in policy.named_parameters():
if param.requires_grad:
@@ -96,10 +108,21 @@ def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_override
print(f"Overwrite existing safetensors in '{env_policy_dir}':")
print(f" - Validate with: `git add {env_policy_dir}`")
print(f" - Revert with: `git checkout -- {env_policy_dir}`")
output_dict, grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name, extra_overrides)
from safetensors.torch import load_file
if (env_policy_dir / "output_dict.safetensors").exists():
prev_loss = load_file(env_policy_dir / "output_dict.safetensors")["loss"]
print(f"Previous loss={prev_loss}")
print(f"New loss={output_dict['loss'].mean()}")
print()
if env_policy_dir.exists():
shutil.rmtree(env_policy_dir)
env_policy_dir.mkdir(parents=True, exist_ok=True)
output_dict, grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name, extra_overrides)
save_file(output_dict, env_policy_dir / "output_dict.safetensors")
save_file(grad_stats, env_policy_dir / "grad_stats.safetensors")
save_file(param_stats, env_policy_dir / "param_stats.safetensors")
@@ -107,27 +130,32 @@ def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_override
if __name__ == "__main__":
if platform.machine() != "x86_64":
raise OSError("Generate policy artifacts on x86_64 machine since it is used for the unit tests. ")
env_policies = [
# ("xarm", "tdmpc", ["policy.use_mpc=false"], "use_policy"),
# ("xarm", "tdmpc", ["policy.use_mpc=true"], "use_mpc"),
# (
# "pusht",
# "diffusion",
# [
# "policy.n_action_steps=8",
# "policy.num_inference_steps=10",
# "policy.down_dims=[128, 256, 512]",
# ],
# "",
# ),
# ("aloha", "act", ["policy.n_action_steps=10"], ""),
# ("aloha", "act", ["policy.n_action_steps=1000", "policy.chunk_size=1000"], "_1000_steps"),
# ("dora_aloha_real", "act_real", ["policy.n_action_steps=10"], ""),
# ("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"], ""),
("xarm", "tdmpc", ["policy.use_mpc=false"], "use_policy"),
("xarm", "tdmpc", ["policy.use_mpc=true"], "use_mpc"),
(
"pusht",
"diffusion",
[
"policy.n_action_steps=8",
"policy.num_inference_steps=10",
"policy.down_dims=[128, 256, 512]",
],
"",
),
("aloha", "act", ["policy.n_action_steps=10"], ""),
("aloha", "act", ["policy.n_action_steps=1000", "policy.chunk_size=1000"], "_1000_steps"),
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"], ""),
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"], ""),
]
if len(env_policies) == 0:
raise RuntimeError("No policies were provided!")
for env, policy, extra_overrides, file_name_extra in env_policies:
print(f"env={env} policy={policy} extra_overrides={extra_overrides}")
save_policy_to_safetensors(
"tests/data/save_policy_to_safetensors", env, policy, extra_overrides, file_name_extra
)
print()

View File

@@ -147,10 +147,11 @@ def test_policy(env_name, policy_name, extra_overrides):
# Check that we run select_actions and get the appropriate output.
env = make_env(cfg, n_envs=2)
batch_size = 2
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=2,
batch_size=batch_size,
shuffle=True,
pin_memory=DEVICE != "cpu",
drop_last=True,
@@ -164,12 +165,19 @@ def test_policy(env_name, policy_name, extra_overrides):
# Test updating the policy (and test that it does not mutate the batch)
batch_ = deepcopy(batch)
policy.forward(batch)
out = policy.forward(batch)
assert set(batch) == set(batch_), "Batch keys are not the same after a forward pass."
assert all(
torch.equal(batch[k], batch_[k]) for k in batch
), "Batch values are not the same after a forward pass."
# Test loss can be visualized using visualize_dataset_html.py
for key in out:
if "loss" in key:
assert (
out[key].ndim == 1 and out[key].shape[0] == batch_size
), f"1 loss value per item in the batch is expected, but {out[key].shape} provided instead."
# reset the policy and environment
policy.reset()
observation, _ = env.reset(seed=cfg.seed)
@@ -234,6 +242,7 @@ def test_policy_defaults(policy_name: str):
[
("xarm", "tdmpc"),
("pusht", "diffusion"),
("pusht", "vqbet"),
("aloha", "act"),
],
)
@@ -250,7 +259,7 @@ def test_yaml_matches_dataclass(env_name: str, policy_name: str):
def test_save_and_load_pretrained(policy_name: str):
policy_cls, _ = get_policy_and_config_classes(policy_name)
policy: Policy = policy_cls()
save_dir = "/tmp/test_save_and_load_pretrained_{policy_cls.__name__}"
save_dir = f"/tmp/test_save_and_load_pretrained_{policy_cls.__name__}"
policy.save_pretrained(save_dir)
policy_ = policy_cls.from_pretrained(save_dir)
assert all(torch.equal(p, p_) for p, p_ in zip(policy.parameters(), policy_.parameters(), strict=True))
@@ -365,6 +374,7 @@ def test_normalize(insert_temporal_dim):
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
"",
),
("pusht", "vqbet", "[]", ""),
("aloha", "act", ["policy.n_action_steps=10"], ""),
("aloha", "act", ["policy.n_action_steps=1000", "policy.chunk_size=1000"], "_1000_steps"),
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"], ""),
@@ -461,7 +471,3 @@ def test_act_temporal_ensembler():
assert torch.all(offline_avg <= einops.reduce(seq_slice, "b s 1 -> b 1", "max"))
# Selected atol=1e-4 keeping in mind actions in [-1, 1] and excepting 0.01% error.
assert torch.allclose(online_avg, offline_avg, atol=1e-4)
if __name__ == "__main__":
test_act_temporal_ensembler()

View File

@@ -25,13 +25,13 @@ from lerobot.scripts.visualize_dataset import visualize_dataset
["lerobot/pusht"],
)
@pytest.mark.parametrize("root", [Path(__file__).parent / "data"])
def test_visualize_local_dataset(tmpdir, repo_id, root):
def test_visualize_dataset_root(tmpdir, repo_id, root):
rrd_path = visualize_dataset(
repo_id,
root=root,
episode_index=0,
batch_size=32,
save=True,
output_dir=tmpdir,
root=root,
)
assert rrd_path.exists()