chore: enable simplify in ruff lint (#2085)
This commit is contained in:
@@ -437,7 +437,9 @@ def concatenate_video_files(
|
||||
tmp_concatenate_path, mode="r", format="concat", options={"safe": "0"}
|
||||
) # safe = 0 allows absolute paths as well as relative paths
|
||||
|
||||
tmp_output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
||||
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_named_file:
|
||||
tmp_output_video_path = tmp_named_file.name
|
||||
|
||||
output_container = av.open(
|
||||
tmp_output_video_path, mode="w", options={"movflags": "faststart"}
|
||||
) # faststart is to move the metadata to the beginning of the file to speed up loading
|
||||
|
||||
@@ -398,10 +398,7 @@ class ACT(nn.Module):
|
||||
"actions must be provided when using the variational objective in training mode."
|
||||
)
|
||||
|
||||
if OBS_IMAGES in batch:
|
||||
batch_size = batch[OBS_IMAGES][0].shape[0]
|
||||
else:
|
||||
batch_size = batch[OBS_ENV_STATE].shape[0]
|
||||
batch_size = batch[OBS_IMAGES][0].shape[0] if OBS_IMAGES in batch else batch[OBS_ENV_STATE].shape[0]
|
||||
|
||||
# Prepare the latent for input to the transformer encoder.
|
||||
if self.config.use_vae and ACTION in batch and self.training:
|
||||
|
||||
@@ -340,7 +340,7 @@ class GripperPenaltyProcessorStep(ComplementaryDataProcessorStep):
|
||||
"""
|
||||
action = self.transition.get(TransitionKey.ACTION)
|
||||
|
||||
raw_joint_positions = complementary_data.get("raw_joint_positions", None)
|
||||
raw_joint_positions = complementary_data.get("raw_joint_positions")
|
||||
if raw_joint_positions is None:
|
||||
return complementary_data
|
||||
|
||||
|
||||
@@ -119,13 +119,12 @@ class _NormalizationMixin:
|
||||
)
|
||||
self.features = reconstructed
|
||||
|
||||
if self.norm_map:
|
||||
# if keys are strings (JSON), rebuild enum map
|
||||
if all(isinstance(k, str) for k in self.norm_map.keys()):
|
||||
reconstructed = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed
|
||||
# if keys are strings (JSON), rebuild enum map
|
||||
if self.norm_map and all(isinstance(k, str) for k in self.norm_map):
|
||||
reconstructed = {}
|
||||
for ft_type_str, norm_mode_str in self.norm_map.items():
|
||||
reconstructed[FeatureType(ft_type_str)] = NormalizationMode(norm_mode_str)
|
||||
self.norm_map = reconstructed
|
||||
|
||||
# Convert stats to tensors and move to the target device once during initialization.
|
||||
self.stats = self.stats or {}
|
||||
|
||||
@@ -152,7 +152,7 @@ class VanillaObservationProcessorStep(ObservationProcessorStep):
|
||||
"""
|
||||
# Build a new features mapping keyed by the same FeatureType buckets
|
||||
# We assume callers already placed features in the correct FeatureType.
|
||||
new_features: dict[PipelineFeatureType, dict[str, PolicyFeature]] = {ft: {} for ft in features.keys()}
|
||||
new_features: dict[PipelineFeatureType, dict[str, PolicyFeature]] = {ft: {} for ft in features}
|
||||
|
||||
exact_pairs = {
|
||||
"pixels": OBS_IMAGE,
|
||||
|
||||
@@ -32,11 +32,8 @@ def init_rerun(session_name: str = "lerobot_control_loop") -> None:
|
||||
|
||||
|
||||
def _is_scalar(x):
|
||||
return (
|
||||
isinstance(x, float)
|
||||
or isinstance(x, numbers.Real)
|
||||
or isinstance(x, (np.integer | np.floating))
|
||||
or (isinstance(x, np.ndarray) and x.ndim == 0)
|
||||
return isinstance(x, (float | numbers.Real | np.integer | np.floating)) or (
|
||||
isinstance(x, np.ndarray) and x.ndim == 0
|
||||
)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user