Improve control robot ; Add process to configure motor indices (#326)

Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: jess-moss <jess.moss@dextrousrobotics.com>
Co-authored-by: Marina Barannikov <marina.barannikov@huggingface.co>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
This commit is contained in:
Remi
2024-08-15 18:11:33 +02:00
committed by GitHub
parent 8c4643687c
commit bbe9057225
35 changed files with 2085 additions and 476 deletions

View File

@@ -77,7 +77,7 @@ conda activate lerobot
Install 🤗 LeRobot:
```bash
pip install .
pip install -e .
```
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
@@ -91,7 +91,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install ".[aloha, pusht]"
pip install -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
@@ -116,10 +116,12 @@ wandb login
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | ├── policies # various policies: act, diffusion, tdmpc
| | ├── robot_devices # various real devices: dynamixel motors, opencv cameras, koch robots
| | └── utils # various utilities
| └── scripts # contains functions to execute via command line
| ├── eval.py # load policy and evaluate it on an environment
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
| ├── control_robot.py # teleoperate a real robot, record data, run a policy
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
| └── visualize_dataset.py # load a dataset and render its demonstrations
├── outputs # contains results of scripts execution: logs, videos, model checkpoints