feat(policies): add Nvidia Gr00t N1.5 model (#2292)
* feat(policies): add Nvidia Gr00t N1.5 model Co-authored-by: lbenhorin <lbenhorin@nvidia.com> Co-authored-by: Aravindh <aravindhs@nvidia.com> Co-authored-by: nv-sachdevkartik <ksachdev@nvidia.com> Co-authored-by: youliangt <youliangt@nvidia.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Jade Choghari <chogharijade@gmail.com> * fix(docs): add groot to index Co-authored-by: sachdevkartik <sachdev.kartik25@gmail.com> --------- Co-authored-by: lbenhorin <lbenhorin@nvidia.com> Co-authored-by: Aravindh <aravindhs@nvidia.com> Co-authored-by: nv-sachdevkartik <ksachdev@nvidia.com> Co-authored-by: youliangt <youliangt@nvidia.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Jade Choghari <chogharijade@gmail.com> Co-authored-by: sachdevkartik <sachdev.kartik25@gmail.com>
This commit is contained in:
207
tests/policies/groot/test_groot_lerobot.py
Normal file
207
tests/policies/groot/test_groot_lerobot.py
Normal file
@@ -0,0 +1,207 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Test script for LeRobot's Groot policy forward and inference passes."""
|
||||
|
||||
import gc
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.policies.groot.configuration_groot import GrootConfig
|
||||
from lerobot.policies.groot.modeling_groot import GrootPolicy
|
||||
from lerobot.policies.groot.processor_groot import make_groot_pre_post_processors
|
||||
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
|
||||
from lerobot.utils.utils import auto_select_torch_device
|
||||
from tests.utils import require_cuda # noqa: E402
|
||||
|
||||
pytest.importorskip("transformers")
|
||||
|
||||
pytestmark = pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
|
||||
reason="This test requires local Groot installation and is not meant for CI",
|
||||
)
|
||||
|
||||
|
||||
# Define constants for dummy data
|
||||
DUMMY_STATE_DIM = 44
|
||||
DUMMY_ACTION_DIM = 44
|
||||
DUMMY_ACTION_HORIZON = 16
|
||||
IMAGE_SIZE = 256
|
||||
DEVICE = auto_select_torch_device()
|
||||
MODEL_PATH = "aractingi/bimanual-handover-groot-10k"
|
||||
|
||||
|
||||
def cleanup_memory():
|
||||
"""Clean up GPU/MPS memory to prevent OOM errors between tests."""
|
||||
print("\nCleaning up memory...")
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.empty_cache()
|
||||
print("Memory cleanup complete.")
|
||||
|
||||
|
||||
def set_seed_all(seed: int):
|
||||
"""Set random seed for all RNG sources to ensure reproducibility."""
|
||||
import random
|
||||
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
# Set deterministic behavior
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.use_deterministic_algorithms(True, warn_only=True)
|
||||
|
||||
|
||||
def instantiate_lerobot_groot(
|
||||
from_pretrained: bool = False,
|
||||
model_path: str = MODEL_PATH,
|
||||
) -> tuple[
|
||||
GrootPolicy,
|
||||
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
|
||||
PolicyProcessorPipeline[PolicyAction, PolicyAction],
|
||||
]:
|
||||
"""Instantiate LeRobot Groot policy with preprocessor and postprocessor."""
|
||||
if from_pretrained:
|
||||
policy = GrootPolicy.from_pretrained(
|
||||
pretrained_name_or_path=model_path,
|
||||
strict=False,
|
||||
)
|
||||
policy.config.embodiment_tag = "gr1"
|
||||
else:
|
||||
config = GrootConfig(
|
||||
base_model_path=model_path,
|
||||
n_action_steps=DUMMY_ACTION_HORIZON,
|
||||
chunk_size=DUMMY_ACTION_HORIZON,
|
||||
image_size=[IMAGE_SIZE, IMAGE_SIZE],
|
||||
device=DEVICE,
|
||||
embodiment_tag="gr1",
|
||||
)
|
||||
policy = GrootPolicy(config)
|
||||
|
||||
policy.to(DEVICE)
|
||||
policy.config.device = DEVICE
|
||||
|
||||
preprocessor, postprocessor = make_groot_pre_post_processors(
|
||||
config=policy.config,
|
||||
dataset_stats=None, # Pass None for dataset_stats to disable normalization (original GR00T doesn't normalize)
|
||||
)
|
||||
|
||||
return (policy, preprocessor, postprocessor)
|
||||
|
||||
|
||||
def create_dummy_data(device=DEVICE):
|
||||
"""Create a dummy data batch for testing."""
|
||||
batch_size = 2
|
||||
prompt = "Pick up the red cube and place it in the bin"
|
||||
state = torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device)
|
||||
|
||||
batch = {
|
||||
"observation.state": state,
|
||||
"action": torch.randn(
|
||||
batch_size,
|
||||
DUMMY_ACTION_HORIZON,
|
||||
DUMMY_ACTION_DIM,
|
||||
dtype=torch.float32,
|
||||
device=device, # Action ground truth (for training)
|
||||
),
|
||||
"observation.images.ego_view": torch.rand(
|
||||
batch_size,
|
||||
3,
|
||||
IMAGE_SIZE,
|
||||
IMAGE_SIZE,
|
||||
dtype=torch.float32,
|
||||
device=device, # Images in [0, 1] range as expected by LeRobot
|
||||
),
|
||||
"task": [prompt for _ in range(batch_size)],
|
||||
}
|
||||
|
||||
return batch
|
||||
|
||||
|
||||
@require_cuda
|
||||
def test_lerobot_groot_inference():
|
||||
"""Test the inference pass (select_action) of LeRobot's Groot policy."""
|
||||
print("Test: LeRobot Groot Inference Pass")
|
||||
|
||||
set_seed_all(42)
|
||||
|
||||
# Instantiate policy and processors
|
||||
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
|
||||
from_pretrained=True
|
||||
)
|
||||
batch = create_dummy_data()
|
||||
|
||||
print("\n[LeRobot] Running inference...")
|
||||
lerobot_policy.eval()
|
||||
batch_lerobot_processed = lerobot_preprocessor(deepcopy(batch))
|
||||
|
||||
# Ensure identical RNG state before inference
|
||||
torch.manual_seed(42)
|
||||
|
||||
with torch.no_grad():
|
||||
lerobot_action = lerobot_policy.select_action(batch_lerobot_processed)
|
||||
|
||||
print(f"\nInference successful. Output action shape: {lerobot_action.shape}")
|
||||
print("Output actions (first 5 dims):")
|
||||
print(lerobot_action[:, :5])
|
||||
|
||||
lerobot_action = lerobot_postprocessor(lerobot_action)
|
||||
|
||||
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor, batch
|
||||
cleanup_memory()
|
||||
|
||||
|
||||
@require_cuda
|
||||
def test_lerobot_groot_forward_pass():
|
||||
"""Test the forward pass of LeRobot's Groot policy."""
|
||||
print("\n" + "=" * 50)
|
||||
print("Test: LeRobot Groot Forward Pass (Training Mode)")
|
||||
|
||||
set_seed_all(42)
|
||||
|
||||
# Instantiate policy and processors
|
||||
lerobot_policy, lerobot_preprocessor, _ = instantiate_lerobot_groot(from_pretrained=True)
|
||||
batch = create_dummy_data()
|
||||
|
||||
lerobot_policy.eval()
|
||||
|
||||
print("\n[LeRobot] Running forward pass...")
|
||||
batch_lerobot_processed = lerobot_preprocessor(deepcopy(batch))
|
||||
|
||||
set_seed_all(42)
|
||||
with torch.no_grad():
|
||||
lerobot_loss, lerobot_metrics = lerobot_policy.forward(batch_lerobot_processed)
|
||||
|
||||
print("\nForward pass successful.")
|
||||
print(f" - Loss: {lerobot_loss.item():.6f}")
|
||||
print(f" - Metrics: {lerobot_metrics}")
|
||||
|
||||
del lerobot_policy, lerobot_preprocessor, batch
|
||||
cleanup_memory()
|
||||
443
tests/policies/groot/test_groot_vs_original.py
Normal file
443
tests/policies/groot/test_groot_vs_original.py
Normal file
@@ -0,0 +1,443 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Test script to verify Groot policy integration with LeRobot vs the original implementation, only meant to be run locally!"""
|
||||
|
||||
import gc
|
||||
import os
|
||||
from copy import deepcopy
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.policies.groot.configuration_groot import GrootConfig
|
||||
from lerobot.policies.groot.modeling_groot import GrootPolicy
|
||||
from lerobot.policies.groot.processor_groot import make_groot_pre_post_processors
|
||||
from lerobot.processor import PolicyAction, PolicyProcessorPipeline
|
||||
|
||||
pytest.importorskip("gr00t")
|
||||
pytest.importorskip("transformers")
|
||||
|
||||
pytestmark = pytest.mark.skipif(
|
||||
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
|
||||
reason="This test requires local Groot installation and is not meant for CI",
|
||||
)
|
||||
|
||||
|
||||
from gr00t.data.dataset import ModalityConfig # noqa: E402
|
||||
from gr00t.data.embodiment_tags import EmbodimentTag # noqa: E402
|
||||
from gr00t.data.transform.base import ComposedModalityTransform # noqa: E402
|
||||
from gr00t.model.policy import Gr00tPolicy # noqa: E402
|
||||
|
||||
# GR1 humanoid dimensions (from pretrained model metadata)
|
||||
# The actual GR1 robot has 44 dimensions for both state and action
|
||||
# GR00TTransform will pad state to 64 and truncate action to 32
|
||||
DUMMY_STATE_DIM = 44
|
||||
DUMMY_ACTION_DIM = 44
|
||||
DUMMY_ACTION_HORIZON = 16
|
||||
IMAGE_SIZE = 256
|
||||
DEVICE = "cpu"
|
||||
MODEL_PATH = "nvidia/GR00T-N1.5-3B"
|
||||
|
||||
GR1_BODY_PARTS = {
|
||||
"left_arm": 7,
|
||||
"left_hand": 6,
|
||||
"left_leg": 6,
|
||||
"neck": 3,
|
||||
"right_arm": 7,
|
||||
"right_hand": 6,
|
||||
"right_leg": 6,
|
||||
"waist": 3,
|
||||
}
|
||||
|
||||
|
||||
def cleanup_memory():
|
||||
"""Clean up GPU/MPS memory to prevent OOM errors between tests."""
|
||||
print("\nCleaning up memory...")
|
||||
gc.collect()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.synchronize()
|
||||
if torch.backends.mps.is_available():
|
||||
torch.mps.empty_cache()
|
||||
print("Memory cleanup complete.")
|
||||
|
||||
|
||||
def set_seed_all(seed: int):
|
||||
"""Set random seed for all RNG sources to ensure reproducibility."""
|
||||
import random
|
||||
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
# Set deterministic behavior
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.use_deterministic_algorithms(True, warn_only=True)
|
||||
|
||||
|
||||
def instantiate_lerobot_groot(
|
||||
from_pretrained: bool = False,
|
||||
model_path: str = MODEL_PATH,
|
||||
) -> tuple[
|
||||
GrootPolicy,
|
||||
PolicyProcessorPipeline[dict[str, Any], dict[str, Any]],
|
||||
PolicyProcessorPipeline[PolicyAction, PolicyAction],
|
||||
]:
|
||||
"""Instantiate LeRobot Groot policy with preprocessor and postprocessor."""
|
||||
if from_pretrained:
|
||||
policy = GrootPolicy.from_pretrained(
|
||||
pretrained_name_or_path=model_path,
|
||||
strict=False,
|
||||
)
|
||||
policy.config.embodiment_tag = "gr1"
|
||||
else:
|
||||
config = GrootConfig(
|
||||
base_model_path=model_path,
|
||||
n_action_steps=DUMMY_ACTION_HORIZON,
|
||||
chunk_size=DUMMY_ACTION_HORIZON,
|
||||
image_size=[IMAGE_SIZE, IMAGE_SIZE],
|
||||
device=DEVICE,
|
||||
embodiment_tag="gr1",
|
||||
)
|
||||
policy = GrootPolicy(config)
|
||||
|
||||
policy.to(DEVICE)
|
||||
policy.config.device = DEVICE
|
||||
|
||||
preprocessor, postprocessor = make_groot_pre_post_processors(
|
||||
config=policy.config,
|
||||
dataset_stats=None, # Pass None for dataset_stats to disable normalization (original GR00T doesn't normalize)
|
||||
)
|
||||
|
||||
return (policy, preprocessor, postprocessor)
|
||||
|
||||
|
||||
def instantiate_original_groot(
|
||||
from_pretrained: bool = False,
|
||||
model_path: str = MODEL_PATH,
|
||||
):
|
||||
"""Instantiate original Groot policy from NVIDIA's implementation."""
|
||||
from gr00t.data.transform.concat import ConcatTransform
|
||||
from gr00t.data.transform.state_action import StateActionToTensor
|
||||
from gr00t.data.transform.video import VideoToNumpy, VideoToTensor
|
||||
from gr00t.model.transforms import GR00TTransform
|
||||
|
||||
video_keys = ["video.ego_view"]
|
||||
state_keys = [
|
||||
"state"
|
||||
] # Important: Use single concatenated "state" key (not split body parts) to match preprocessing
|
||||
action_keys = [
|
||||
"action.left_arm",
|
||||
"action.right_arm",
|
||||
"action.left_hand",
|
||||
"action.right_hand",
|
||||
"action.left_leg",
|
||||
"action.right_leg",
|
||||
"action.neck",
|
||||
"action.waist",
|
||||
]
|
||||
language_keys = ["annotation.human.action.task_description"]
|
||||
|
||||
modality_config = {
|
||||
"video": ModalityConfig(
|
||||
delta_indices=[0], # Current frame only
|
||||
modality_keys=video_keys,
|
||||
),
|
||||
"state": ModalityConfig(
|
||||
delta_indices=[0],
|
||||
modality_keys=state_keys,
|
||||
),
|
||||
"action": ModalityConfig(
|
||||
delta_indices=list(range(DUMMY_ACTION_HORIZON)),
|
||||
modality_keys=action_keys,
|
||||
),
|
||||
"language": ModalityConfig(
|
||||
delta_indices=[0],
|
||||
modality_keys=language_keys,
|
||||
),
|
||||
}
|
||||
|
||||
modality_transform = ComposedModalityTransform(
|
||||
transforms=[
|
||||
VideoToTensor(apply_to=video_keys),
|
||||
VideoToNumpy(apply_to=video_keys), # Convert to numpy (GR00TTransform expects numpy arrays)
|
||||
# State is already a single concatenated key, so no StateActionToTensor needed
|
||||
# Convert action from numpy to tensor
|
||||
StateActionToTensor(apply_to=action_keys),
|
||||
# Concatenate only video and actions (state is already single key)
|
||||
ConcatTransform(
|
||||
video_concat_order=video_keys,
|
||||
state_concat_order=[], # Empty:state is already single key
|
||||
action_concat_order=action_keys,
|
||||
),
|
||||
GR00TTransform(
|
||||
max_state_dim=64,
|
||||
max_action_dim=32,
|
||||
state_horizon=1,
|
||||
action_horizon=DUMMY_ACTION_HORIZON,
|
||||
training=False,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
policy = Gr00tPolicy(
|
||||
model_path=model_path,
|
||||
embodiment_tag=EmbodimentTag.GR1,
|
||||
modality_config=modality_config,
|
||||
modality_transform=modality_transform,
|
||||
device=DEVICE,
|
||||
)
|
||||
|
||||
return policy, modality_config, modality_transform
|
||||
|
||||
|
||||
def create_dummy_data(device=DEVICE):
|
||||
"""Create dummy data for testing both implementations."""
|
||||
batch_size = 2
|
||||
prompt = "Pick up the red cube and place it in the bin"
|
||||
state = torch.randn(batch_size, DUMMY_STATE_DIM, dtype=torch.float32, device=device)
|
||||
|
||||
batch = {
|
||||
"observation.state": state,
|
||||
"action": torch.randn(
|
||||
batch_size,
|
||||
DUMMY_ACTION_HORIZON,
|
||||
DUMMY_ACTION_DIM,
|
||||
dtype=torch.float32,
|
||||
device=device, # Action ground truth (for training)
|
||||
),
|
||||
"observation.images.ego_view": torch.rand(
|
||||
batch_size,
|
||||
3,
|
||||
IMAGE_SIZE,
|
||||
IMAGE_SIZE,
|
||||
dtype=torch.float32,
|
||||
device=device, # Images in [0, 1] range as expected by LeRobot
|
||||
),
|
||||
"task": [prompt for _ in range(batch_size)],
|
||||
}
|
||||
|
||||
return batch
|
||||
|
||||
|
||||
def convert_lerobot_to_original_format(batch, modality_config):
|
||||
"""Convert LeRobot batch format to original Groot format.
|
||||
|
||||
The original Groot expects observations in this format:
|
||||
{
|
||||
"video.<camera_name>": np.ndarray (T, H, W, C) or (B, T, H, W, C)
|
||||
"state.<state_component>": np.ndarray (T, D) or (B, T, D)
|
||||
"action.<action_component>": np.ndarray (T, D) or (B, T, D)
|
||||
"annotation.<annotation_type>": str or list[str]
|
||||
}
|
||||
"""
|
||||
# Original Groot expects (T, H, W, C) format for images
|
||||
# LeRobot has (B, C, H, W) format, so we need to convert
|
||||
observation = {}
|
||||
|
||||
for img_key in ["ego_view"]:
|
||||
lerobot_key = f"observation.images.{img_key}"
|
||||
if lerobot_key in batch:
|
||||
img = batch[lerobot_key]
|
||||
# Convert from (B, C, H, W) to (B, T=1, H, W, C)
|
||||
img_np = img.permute(0, 2, 3, 1).unsqueeze(1).cpu().numpy()
|
||||
# Convert [0, 1] to [0, 255] uint8 as expected by original
|
||||
img_np = (img_np * 255).astype(np.uint8)
|
||||
observation[f"video.{img_key}"] = img_np
|
||||
|
||||
# Important: The Original's GR00TTransform expects "state" as (B, T, D), not split body parts
|
||||
if "observation.state" in batch:
|
||||
state = batch["observation.state"]
|
||||
state_np = state.unsqueeze(1).cpu().numpy() # (B, 1, D)
|
||||
observation["state"] = state_np
|
||||
|
||||
if "action" in batch:
|
||||
action = batch["action"]
|
||||
action_np = action.cpu().numpy()
|
||||
|
||||
start_idx = 0
|
||||
for part_name, part_dim in GR1_BODY_PARTS.items():
|
||||
end_idx = start_idx + part_dim
|
||||
observation[f"action.{part_name}"] = action_np[:, :, start_idx:end_idx]
|
||||
start_idx = end_idx
|
||||
|
||||
if "task" in batch:
|
||||
task_list = batch["task"]
|
||||
# GR00TTransform expects language with (B, T) shape for batched data
|
||||
# Create a (B, T=1) array where each element is the string directly
|
||||
bsz = len(task_list)
|
||||
task_array = np.empty((bsz, 1), dtype=object)
|
||||
for i in range(bsz):
|
||||
task_array[i, 0] = task_list[i] # Assign string directly to each (i, 0) position
|
||||
observation["annotation.human.action.task_description"] = task_array
|
||||
|
||||
return observation
|
||||
|
||||
|
||||
def test_groot_original_vs_lerobot_pretrained():
|
||||
"""Test Groot original implementation vs LeRobot implementation with pretrained weights."""
|
||||
print("Test: Groot Original vs LeRobot with Pretrained Weights (Inference)")
|
||||
|
||||
set_seed_all(42)
|
||||
|
||||
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
|
||||
from_pretrained=True
|
||||
)
|
||||
original_policy, modality_config, modality_transform = instantiate_original_groot(from_pretrained=True)
|
||||
|
||||
batch = create_dummy_data()
|
||||
batch_lerobot = deepcopy(batch)
|
||||
|
||||
print("\n[LeRobot] Running inference...")
|
||||
lerobot_policy.eval()
|
||||
batch_lerobot_processed = lerobot_preprocessor(batch_lerobot)
|
||||
|
||||
# Important: Reset seed immediately before inference to ensure identical RNG state
|
||||
torch.manual_seed(42)
|
||||
|
||||
with torch.no_grad():
|
||||
lerobot_actions = lerobot_policy.select_action(batch_lerobot_processed)
|
||||
|
||||
print("\n[Original] Running inference...")
|
||||
original_policy.model.eval()
|
||||
observation = convert_lerobot_to_original_format(batch, modality_config)
|
||||
original_obs_transformed = modality_transform(deepcopy(observation))
|
||||
|
||||
# Important: Reset seed immediately before inference to ensure identical RNG state
|
||||
torch.manual_seed(42)
|
||||
|
||||
with torch.no_grad():
|
||||
original_model_output = original_policy.model.get_action(original_obs_transformed)
|
||||
original_actions_raw = original_model_output["action_pred"] # [2, 16, 32]
|
||||
# Take first timestep
|
||||
original_actions = original_actions_raw[:, 0, :].to(lerobot_actions.device).to(lerobot_actions.dtype)
|
||||
|
||||
print("Action Comparison:")
|
||||
diff = lerobot_actions - original_actions
|
||||
abs_diff = torch.abs(diff)
|
||||
|
||||
for batch_idx in range(lerobot_actions.shape[0]):
|
||||
print(f"\n{'=' * 60}")
|
||||
print(f"Batch {batch_idx}")
|
||||
print(f"{'=' * 60}")
|
||||
print(f"{'Idx':<5} {'LeRobot':<14} {'Original':<14} {'Difference':<14}")
|
||||
print("-" * 60)
|
||||
for action_idx in range(lerobot_actions.shape[1]):
|
||||
lr_val = lerobot_actions[batch_idx, action_idx].item()
|
||||
orig_val = original_actions[batch_idx, action_idx].item()
|
||||
diff_val = abs(lr_val - orig_val)
|
||||
sign = "+" if (lr_val - orig_val) > 0 else "-"
|
||||
print(f"{action_idx:<5} {lr_val:>13.6f} {orig_val:>13.6f} {sign}{diff_val:>12.6f}")
|
||||
|
||||
max_diff = abs_diff.max().item()
|
||||
tolerance = 0.001
|
||||
assert torch.allclose(lerobot_actions, original_actions, atol=tolerance), (
|
||||
f"Actions differ by more than tolerance ({tolerance}): max diff = {max_diff:.6f}"
|
||||
)
|
||||
print(f"\nSuccess: Actions match within tolerance ({tolerance})!")
|
||||
|
||||
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor
|
||||
del original_policy, modality_config, modality_transform
|
||||
del batch, batch_lerobot, observation
|
||||
cleanup_memory()
|
||||
|
||||
|
||||
def test_groot_forward_pass_comparison():
|
||||
"""Test forward pass comparison between LeRobot and Original Groot implementations."""
|
||||
print("Test: Forward Pass Comparison (Training Mode)")
|
||||
|
||||
set_seed_all(42)
|
||||
|
||||
lerobot_policy, lerobot_preprocessor, lerobot_postprocessor = instantiate_lerobot_groot(
|
||||
from_pretrained=True
|
||||
)
|
||||
original_policy, modality_config, modality_transform = instantiate_original_groot(from_pretrained=True)
|
||||
|
||||
batch = create_dummy_data()
|
||||
lerobot_policy.eval()
|
||||
original_policy.model.eval()
|
||||
|
||||
print("\n[LeRobot] Running forward pass...")
|
||||
batch_lerobot = deepcopy(batch)
|
||||
batch_lerobot_processed = lerobot_preprocessor(batch_lerobot)
|
||||
|
||||
set_seed_all(42)
|
||||
with torch.no_grad():
|
||||
lerobot_loss, lerobot_metrics = lerobot_policy.forward(batch_lerobot_processed)
|
||||
|
||||
print(f" Loss: {lerobot_loss.item():.6f}")
|
||||
|
||||
print("\n[Original] Running forward pass...")
|
||||
observation = convert_lerobot_to_original_format(batch, modality_config)
|
||||
transformed_obs = modality_transform(observation)
|
||||
|
||||
if "action" not in transformed_obs:
|
||||
action_for_forward = batch_lerobot_processed["action"]
|
||||
action_mask_for_forward = batch_lerobot_processed["action_mask"]
|
||||
|
||||
# Match action horizon if needed
|
||||
if action_for_forward.shape[1] != original_policy.model.action_horizon:
|
||||
if action_for_forward.shape[1] < original_policy.model.action_horizon:
|
||||
pad_size = original_policy.model.action_horizon - action_for_forward.shape[1]
|
||||
last_action = action_for_forward[:, -1:, :]
|
||||
padding = last_action.repeat(1, pad_size, 1)
|
||||
action_for_forward = torch.cat([action_for_forward, padding], dim=1)
|
||||
|
||||
mask_padding = torch.zeros(
|
||||
action_mask_for_forward.shape[0],
|
||||
pad_size,
|
||||
action_mask_for_forward.shape[2],
|
||||
dtype=action_mask_for_forward.dtype,
|
||||
device=action_mask_for_forward.device,
|
||||
)
|
||||
action_mask_for_forward = torch.cat([action_mask_for_forward, mask_padding], dim=1)
|
||||
else:
|
||||
action_for_forward = action_for_forward[:, : original_policy.model.action_horizon, :]
|
||||
action_mask_for_forward = action_mask_for_forward[
|
||||
:, : original_policy.model.action_horizon, :
|
||||
]
|
||||
|
||||
transformed_obs["action"] = action_for_forward
|
||||
transformed_obs["action_mask"] = action_mask_for_forward
|
||||
|
||||
set_seed_all(42)
|
||||
with torch.no_grad():
|
||||
original_outputs = original_policy.model.forward(transformed_obs)
|
||||
|
||||
original_loss = original_outputs["loss"]
|
||||
print(f" Loss: {original_loss.item():.6f}")
|
||||
|
||||
loss_diff = abs(lerobot_loss.item() - original_loss.item())
|
||||
loss_rel_diff = loss_diff / (abs(original_loss.item()) + 1e-8) * 100
|
||||
|
||||
print("\nLoss Values:")
|
||||
print(f" LeRobot: {lerobot_loss.item():.6f}")
|
||||
print(f" Original: {original_loss.item():.6f}")
|
||||
print(f" Absolute difference: {loss_diff:.6f}")
|
||||
print(f" Relative difference: {loss_rel_diff:.2f}%")
|
||||
|
||||
del lerobot_policy, lerobot_preprocessor, lerobot_postprocessor
|
||||
del original_policy, modality_config, modality_transform
|
||||
del batch, batch_lerobot, observation, transformed_obs
|
||||
cleanup_memory()
|
||||
Reference in New Issue
Block a user