Commit before episodes episodes_stats merging

This commit is contained in:
Remi Cadene
2025-04-09 15:20:15 +02:00
parent 53ecec5fb2
commit c1b28f0b58
12 changed files with 905 additions and 396 deletions

View File

@@ -9,13 +9,16 @@ import numpy as np
import PIL.Image
import pytest
import torch
from datasets import Dataset
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.utils import (
DEFAULT_CHUNK_SIZE,
DEFAULT_FEATURES,
DEFAULT_PARQUET_PATH,
DEFAULT_DATA_PATH,
DEFAULT_FILE_SIZE_IN_MB,
DEFAULT_VIDEO_PATH,
flatten_dict,
get_hf_features_from_features,
hf_transform_to_torch,
)
@@ -33,10 +36,9 @@ class LeRobotDatasetFactory(Protocol):
def __call__(self, *args, **kwargs) -> LeRobotDataset: ...
def get_task_index(task_dicts: dict, task: str) -> int:
tasks = {d["task_index"]: d["task"] for d in task_dicts.values()}
task_to_task_index = {task: task_idx for task_idx, task in tasks.items()}
return task_to_task_index[task]
def get_task_index(tasks: Dataset, task: str) -> int:
task_idx = tasks["task"].index(task)
return task_idx
@pytest.fixture(scope="session")
@@ -104,9 +106,9 @@ def info_factory(features_factory):
total_frames: int = 0,
total_tasks: int = 0,
total_videos: int = 0,
total_chunks: int = 0,
chunks_size: int = DEFAULT_CHUNK_SIZE,
data_path: str = DEFAULT_PARQUET_PATH,
files_size_in_mb: float = DEFAULT_FILE_SIZE_IN_MB,
data_path: str = DEFAULT_DATA_PATH,
video_path: str = DEFAULT_VIDEO_PATH,
motor_features: dict = DUMMY_MOTOR_FEATURES,
camera_features: dict = DUMMY_CAMERA_FEATURES,
@@ -120,8 +122,8 @@ def info_factory(features_factory):
"total_frames": total_frames,
"total_tasks": total_tasks,
"total_videos": total_videos,
"total_chunks": total_chunks,
"chunks_size": chunks_size,
"files_size_in_mb": files_size_in_mb,
"fps": fps,
"splits": {},
"data_path": data_path,
@@ -168,25 +170,25 @@ def episodes_stats_factory(stats_factory):
features: dict[str],
total_episodes: int = 3,
) -> dict:
episodes_stats = {}
for episode_index in range(total_episodes):
episodes_stats[episode_index] = {
"episode_index": episode_index,
"stats": stats_factory(features),
}
return episodes_stats
def _generator(total_episodes):
for ep_idx in range(total_episodes):
flat_ep_stats = flatten_dict(stats_factory(features))
flat_ep_stats["episode_index"] = ep_idx
yield flat_ep_stats
# Simpler to rely on generator instead of from_dict
return Dataset.from_generator(lambda: _generator(total_episodes))
return _create_episodes_stats
@pytest.fixture(scope="session")
def tasks_factory():
def _create_tasks(total_tasks: int = 3) -> int:
tasks = {}
for task_index in range(total_tasks):
task_dict = {"task_index": task_index, "task": f"Perform action {task_index}."}
tasks[task_index] = task_dict
return tasks
def _create_tasks(total_tasks: int = 3) -> Dataset:
ids = list(range(total_tasks))
tasks = [f"Perform action {i}." for i in ids]
return Dataset.from_dict({"task_index": ids, "task": tasks})
return _create_tasks
@@ -196,6 +198,7 @@ def episodes_factory(tasks_factory):
def _create_episodes(
total_episodes: int = 3,
total_frames: int = 400,
video_keys: list[str] | None = None,
tasks: dict | None = None,
multi_task: bool = False,
):
@@ -215,26 +218,41 @@ def episodes_factory(tasks_factory):
# Generate random lengths that sum up to total_length
lengths = np.random.multinomial(total_frames, [1 / total_episodes] * total_episodes).tolist()
tasks_list = [task_dict["task"] for task_dict in tasks.values()]
num_tasks_available = len(tasks_list)
num_tasks_available = len(tasks["task"])
episodes = {}
remaining_tasks = tasks_list.copy()
d = {
"episode_index": [],
"data/chunk_index": [],
"data/file_index": [],
"tasks": [],
"length": [],
}
if video_keys is not None:
for video_key in video_keys:
d[f"{video_key}/chunk_index"] = []
d[f"{video_key}/file_index"] = []
remaining_tasks = tasks["task"].copy()
for ep_idx in range(total_episodes):
num_tasks_in_episode = random.randint(1, min(3, num_tasks_available)) if multi_task else 1
tasks_to_sample = remaining_tasks if remaining_tasks else tasks_list
tasks_to_sample = remaining_tasks if remaining_tasks else tasks["task"]
episode_tasks = random.sample(tasks_to_sample, min(num_tasks_in_episode, len(tasks_to_sample)))
if remaining_tasks:
for task in episode_tasks:
remaining_tasks.remove(task)
episodes[ep_idx] = {
"episode_index": ep_idx,
"tasks": episode_tasks,
"length": lengths[ep_idx],
}
d["episode_index"].append(ep_idx)
# TODO(rcadene): remove heuristic of only one file
d["data/chunk_index"].append(0)
d["data/file_index"].append(0)
d["tasks"].append(episode_tasks)
d["length"].append(lengths[ep_idx])
if video_keys is not None:
for video_key in video_keys:
d[f"{video_key}/chunk_index"].append(0)
d[f"{video_key}/file_index"].append(0)
return episodes
return Dataset.from_dict(d)
return _create_episodes
@@ -258,7 +276,7 @@ def hf_dataset_factory(features_factory, tasks_factory, episodes_factory, img_ar
frame_index_col = np.array([], dtype=np.int64)
episode_index_col = np.array([], dtype=np.int64)
task_index = np.array([], dtype=np.int64)
for ep_dict in episodes.values():
for ep_dict in episodes:
timestamp_col = np.concatenate((timestamp_col, np.arange(ep_dict["length"]) / fps))
frame_index_col = np.concatenate((frame_index_col, np.arange(ep_dict["length"], dtype=int)))
episode_index_col = np.concatenate(
@@ -291,7 +309,7 @@ def hf_dataset_factory(features_factory, tasks_factory, episodes_factory, img_ar
},
features=hf_features,
)
dataset.set_transform(hf_transform_to_torch)
dataset.set_format("torch")
return dataset
return _create_hf_dataset
@@ -326,8 +344,9 @@ def lerobot_dataset_metadata_factory(
if not tasks:
tasks = tasks_factory(total_tasks=info["total_tasks"])
if not episodes:
video_keys = [key for key, ft in info["features"].items() if ft["dtype"] == "video"]
episodes = episodes_factory(
total_episodes=info["total_episodes"], total_frames=info["total_frames"], tasks=tasks
total_episodes=info["total_episodes"], total_frames=info["total_frames"], video_keys=video_keys, tasks=tasks
)
mock_snapshot_download = mock_snapshot_download_factory(
@@ -371,9 +390,9 @@ def lerobot_dataset_factory(
multi_task: bool = False,
info: dict | None = None,
stats: dict | None = None,
episodes_stats: list[dict] | None = None,
tasks: list[dict] | None = None,
episode_dicts: list[dict] | None = None,
episodes_stats: datasets.Dataset | None = None,
tasks: datasets.Dataset | None = None,
episode_dicts: datasets.Dataset | None = None,
hf_dataset: datasets.Dataset | None = None,
**kwargs,
) -> LeRobotDataset:
@@ -388,9 +407,11 @@ def lerobot_dataset_factory(
if not tasks:
tasks = tasks_factory(total_tasks=info["total_tasks"])
if not episode_dicts:
video_keys = [key for key, ft in info["features"].items() if ft["dtype"] == "video"]
episode_dicts = episodes_factory(
total_episodes=info["total_episodes"],
total_frames=info["total_frames"],
video_keys=video_keys,
tasks=tasks,
multi_task=multi_task,
)

View File

@@ -7,83 +7,75 @@ import pyarrow.compute as pc
import pyarrow.parquet as pq
import pytest
from datasets import Dataset
from lerobot.common.datasets.utils import (
EPISODES_PATH,
EPISODES_STATS_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
write_episodes,
write_episodes_stats,
write_hf_dataset,
write_info,
write_stats,
write_tasks,
)
@pytest.fixture(scope="session")
def info_path(info_factory):
def _create_info_json_file(dir: Path, info: dict | None = None) -> Path:
def create_info(info_factory):
def _create_info(dir: Path, info: dict | None = None):
if not info:
info = info_factory()
fpath = dir / INFO_PATH
fpath.parent.mkdir(parents=True, exist_ok=True)
with open(fpath, "w") as f:
json.dump(info, f, indent=4, ensure_ascii=False)
return fpath
write_info(info, dir)
return _create_info_json_file
return _create_info
@pytest.fixture(scope="session")
def stats_path(stats_factory):
def _create_stats_json_file(dir: Path, stats: dict | None = None) -> Path:
def create_stats(stats_factory):
def _create_stats(dir: Path, stats: dict | None = None):
if not stats:
stats = stats_factory()
fpath = dir / STATS_PATH
fpath.parent.mkdir(parents=True, exist_ok=True)
with open(fpath, "w") as f:
json.dump(stats, f, indent=4, ensure_ascii=False)
return fpath
write_stats(stats, dir)
return _create_stats_json_file
return _create_stats
@pytest.fixture(scope="session")
def episodes_stats_path(episodes_stats_factory):
def _create_episodes_stats_jsonl_file(dir: Path, episodes_stats: list[dict] | None = None) -> Path:
def create_episodes_stats(episodes_stats_factory):
def _create_episodes_stats(dir: Path, episodes_stats: Dataset | None = None):
if not episodes_stats:
episodes_stats = episodes_stats_factory()
fpath = dir / EPISODES_STATS_PATH
fpath.parent.mkdir(parents=True, exist_ok=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(episodes_stats.values())
return fpath
write_episodes_stats(episodes_stats, dir)
return _create_episodes_stats_jsonl_file
return _create_episodes_stats
@pytest.fixture(scope="session")
def tasks_path(tasks_factory):
def _create_tasks_jsonl_file(dir: Path, tasks: list | None = None) -> Path:
def create_tasks(tasks_factory):
def _create_tasks(dir: Path, tasks: Dataset | None = None):
if not tasks:
tasks = tasks_factory()
fpath = dir / TASKS_PATH
fpath.parent.mkdir(parents=True, exist_ok=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(tasks.values())
return fpath
write_tasks(tasks, dir)
return _create_tasks_jsonl_file
return _create_tasks
@pytest.fixture(scope="session")
def episode_path(episodes_factory):
def _create_episodes_jsonl_file(dir: Path, episodes: list | None = None) -> Path:
def create_episodes(episodes_factory):
def _create_episodes(dir: Path, episodes: Dataset | None = None):
if not episodes:
episodes = episodes_factory()
fpath = dir / EPISODES_PATH
fpath.parent.mkdir(parents=True, exist_ok=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(episodes.values())
return fpath
write_episodes(episodes, dir)
return _create_episodes_jsonl_file
return _create_episodes
@pytest.fixture(scope="session")
def create_hf_dataset(hf_dataset_factory):
def _create_hf_dataset(dir: Path, hf_dataset: Dataset | None = None):
if not hf_dataset:
hf_dataset = hf_dataset_factory()
write_hf_dataset(hf_dataset, dir)
return _create_hf_dataset
@pytest.fixture(scope="session")
@@ -91,6 +83,7 @@ def single_episode_parquet_path(hf_dataset_factory, info_factory):
def _create_single_episode_parquet(
dir: Path, ep_idx: int = 0, hf_dataset: datasets.Dataset | None = None, info: dict | None = None
) -> Path:
raise NotImplementedError()
if not info:
info = info_factory()
if hf_dataset is None:
@@ -114,6 +107,7 @@ def multi_episode_parquet_path(hf_dataset_factory, info_factory):
def _create_multi_episode_parquet(
dir: Path, hf_dataset: datasets.Dataset | None = None, info: dict | None = None
) -> Path:
raise NotImplementedError()
if not info:
info = info_factory()
if hf_dataset is None:

104
tests/fixtures/hub.py vendored
View File

@@ -5,11 +5,12 @@ import pytest
from huggingface_hub.utils import filter_repo_objects
from lerobot.common.datasets.utils import (
EPISODES_PATH,
EPISODES_STATS_PATH,
DEFAULT_DATA_PATH,
DEFAULT_EPISODES_PATH,
DEFAULT_EPISODES_STATS_PATH,
DEFAULT_TASKS_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
LEGACY_STATS_PATH,
)
from tests.fixtures.constants import LEROBOT_TEST_DIR
@@ -17,17 +18,17 @@ from tests.fixtures.constants import LEROBOT_TEST_DIR
@pytest.fixture(scope="session")
def mock_snapshot_download_factory(
info_factory,
info_path,
create_info,
stats_factory,
stats_path,
create_stats,
episodes_stats_factory,
episodes_stats_path,
create_episodes_stats,
tasks_factory,
tasks_path,
create_tasks,
episodes_factory,
episode_path,
single_episode_parquet_path,
create_episodes,
hf_dataset_factory,
create_hf_dataset,
):
"""
This factory allows to patch snapshot_download such that when called, it will create expected files rather
@@ -37,9 +38,9 @@ def mock_snapshot_download_factory(
def _mock_snapshot_download_func(
info: dict | None = None,
stats: dict | None = None,
episodes_stats: list[dict] | None = None,
tasks: list[dict] | None = None,
episodes: list[dict] | None = None,
episodes_stats: datasets.Dataset | None = None,
tasks: datasets.Dataset | None = None,
episodes: datasets.Dataset | None = None,
hf_dataset: datasets.Dataset | None = None,
):
if not info:
@@ -59,14 +60,6 @@ def mock_snapshot_download_factory(
if not hf_dataset:
hf_dataset = hf_dataset_factory(tasks=tasks, episodes=episodes, fps=info["fps"])
def _extract_episode_index_from_path(fpath: str) -> int:
path = Path(fpath)
if path.suffix == ".parquet" and path.stem.startswith("episode_"):
episode_index = int(path.stem[len("episode_") :]) # 'episode_000000' -> 0
return episode_index
else:
return None
def _mock_snapshot_download(
repo_id: str,
local_dir: str | Path | None = None,
@@ -79,40 +72,55 @@ def mock_snapshot_download_factory(
local_dir = LEROBOT_TEST_DIR
# List all possible files
all_files = []
meta_files = [INFO_PATH, STATS_PATH, EPISODES_STATS_PATH, TASKS_PATH, EPISODES_PATH]
all_files.extend(meta_files)
data_files = []
for episode_dict in episodes.values():
ep_idx = episode_dict["episode_index"]
ep_chunk = ep_idx // info["chunks_size"]
data_path = info["data_path"].format(episode_chunk=ep_chunk, episode_index=ep_idx)
data_files.append(data_path)
all_files.extend(data_files)
all_files = [
INFO_PATH,
LEGACY_STATS_PATH,
# TODO(rcadene)
DEFAULT_TASKS_PATH.format(chunk_index=0, file_index=0),
DEFAULT_EPISODES_STATS_PATH.format(chunk_index=0, file_index=0),
DEFAULT_EPISODES_PATH.format(chunk_index=0, file_index=0),
DEFAULT_DATA_PATH.format(chunk_index=0, file_index=0),
]
allowed_files = filter_repo_objects(
all_files, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns
)
# Create allowed files
has_info = False
has_tasks = False
has_episodes = False
has_episodes_stats = False
has_stats = False
has_data = False
for rel_path in allowed_files:
if rel_path.startswith("data/"):
episode_index = _extract_episode_index_from_path(rel_path)
if episode_index is not None:
_ = single_episode_parquet_path(local_dir, episode_index, hf_dataset, info)
if rel_path == INFO_PATH:
_ = info_path(local_dir, info)
elif rel_path == STATS_PATH:
_ = stats_path(local_dir, stats)
elif rel_path == EPISODES_STATS_PATH:
_ = episodes_stats_path(local_dir, episodes_stats)
elif rel_path == TASKS_PATH:
_ = tasks_path(local_dir, tasks)
elif rel_path == EPISODES_PATH:
_ = episode_path(local_dir, episodes)
if rel_path.startswith("meta/info.json"):
has_info = True
elif rel_path.startswith("meta/stats"):
has_stats = True
elif rel_path.startswith("meta/tasks"):
has_tasks = True
elif rel_path.startswith("meta/episodes_stats"):
has_episodes_stats = True
elif rel_path.startswith("meta/episodes"):
has_episodes = True
elif rel_path.startswith("data/"):
has_data = True
else:
pass
raise ValueError(f"{rel_path} not supported.")
if has_info:
create_info(local_dir, info)
if has_stats:
create_stats(local_dir, stats)
if has_tasks:
create_tasks(local_dir, tasks)
if has_episodes:
create_episodes(local_dir, episodes)
if has_episodes_stats:
create_episodes_stats(local_dir, episodes_stats)
if has_data:
create_hf_dataset(local_dir, hf_dataset)
return str(local_dir)
return _mock_snapshot_download