chore(docs): prioritize use of entry points in docs + fix nightly badge (#1692)
* chore(docs): fix typo in nightly badge * chore(docs): prioritize the use of entrypoints for consistency
This commit is contained in:
@@ -18,7 +18,7 @@ Helper to recalibrate your device (robot or teleoperator).
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.calibrate \
|
||||
lerobot-calibrate \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=blue
|
||||
|
||||
@@ -60,7 +60,7 @@ class OpenCVCamera(Camera):
|
||||
or port changes, especially on Linux. Use the provided utility script to find
|
||||
available camera indices or paths:
|
||||
```bash
|
||||
python -m lerobot.find_cameras opencv
|
||||
lerobot-find-cameras opencv
|
||||
```
|
||||
|
||||
The camera's default settings (FPS, resolution, color mode) are used unless
|
||||
@@ -165,8 +165,7 @@ class OpenCVCamera(Camera):
|
||||
self.videocapture.release()
|
||||
self.videocapture = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open {self}."
|
||||
f"Run `python -m lerobot.find_cameras opencv` to find available cameras."
|
||||
f"Failed to open {self}.Run `lerobot-find-cameras opencv` to find available cameras."
|
||||
)
|
||||
|
||||
self._configure_capture_settings()
|
||||
|
||||
@@ -51,7 +51,7 @@ class RealSenseCamera(Camera):
|
||||
|
||||
Use the provided utility script to find available camera indices and default profiles:
|
||||
```bash
|
||||
python -m lerobot.find_cameras realsense
|
||||
lerobot-find-cameras realsense
|
||||
```
|
||||
|
||||
A `RealSenseCamera` instance requires a configuration object specifying the
|
||||
@@ -176,8 +176,7 @@ class RealSenseCamera(Camera):
|
||||
self.rs_profile = None
|
||||
self.rs_pipeline = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open {self}."
|
||||
"Run `python -m lerobot.find_cameras realsense` to find available cameras."
|
||||
f"Failed to open {self}.Run `lerobot-find-cameras realsense` to find available cameras."
|
||||
) from e
|
||||
|
||||
self._configure_capture_settings()
|
||||
|
||||
@@ -20,7 +20,7 @@ Helper to find the camera devices available in your system.
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.find_cameras
|
||||
lerobot-find-cameras
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ Helper to find the USB port associated with your MotorsBus.
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.find_port
|
||||
lerobot-find-port
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
@@ -222,7 +222,7 @@ class MotorsBus(abc.ABC):
|
||||
A MotorsBus subclass instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python -m lerobot.find_port.py
|
||||
lerobot-find-port.py
|
||||
>>> Finding all available ports for the MotorsBus.
|
||||
>>> ["/dev/tty.usbmodem575E0032081", "/dev/tty.usbmodem575E0031751"]
|
||||
>>> Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
@@ -446,7 +446,7 @@ class MotorsBus(abc.ABC):
|
||||
except (FileNotFoundError, OSError, serial.SerialException) as e:
|
||||
raise ConnectionError(
|
||||
f"\nCould not connect on port '{self.port}'. Make sure you are using the correct port."
|
||||
"\nTry running `python -m lerobot.find_port`\n"
|
||||
"\nTry running `lerobot-find-port`\n"
|
||||
) from e
|
||||
|
||||
@abc.abstractmethod
|
||||
|
||||
@@ -30,7 +30,7 @@ pip install -e ".[pi0]"
|
||||
|
||||
Example of finetuning the pi0 pretrained model (`pi0_base` in `openpi`):
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.path=lerobot/pi0 \
|
||||
--dataset.repo_id=danaaubakirova/koch_test
|
||||
```
|
||||
@@ -38,7 +38,7 @@ python -m lerobot.scripts.train \
|
||||
Example of finetuning the pi0 neural network with PaliGemma and expert Gemma
|
||||
pretrained with VLM default parameters before pi0 finetuning:
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.type=pi0 \
|
||||
--dataset.repo_id=danaaubakirova/koch_test
|
||||
```
|
||||
|
||||
@@ -25,14 +25,14 @@ Disclaimer: It is not expected to perform as well as the original implementation
|
||||
|
||||
Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`):
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.path=lerobot/pi0fast_base \
|
||||
--dataset.repo_id=danaaubakirova/koch_test
|
||||
```
|
||||
|
||||
Example of training the pi0+FAST neural network with from scratch:
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.type=pi0fast \
|
||||
--dataset.repo_id=danaaubakirova/koch_test
|
||||
```
|
||||
|
||||
@@ -28,7 +28,7 @@ pip install -e ".[smolvla]"
|
||||
|
||||
Example of finetuning the smolvla pretrained model (`smolvla_base`):
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.path=lerobot/smolvla_base \
|
||||
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
|
||||
--batch_size=64 \
|
||||
@@ -38,7 +38,7 @@ python -m lerobot.scripts.train \
|
||||
Example of finetuning a smolVLA. SmolVLA is composed of a pretrained VLM,
|
||||
and an action expert.
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--policy.type=smolvla \
|
||||
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
|
||||
--batch_size=64 \
|
||||
|
||||
@@ -18,7 +18,7 @@ Records a dataset. Actions for the robot can be either generated by teleoperatio
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.record \
|
||||
lerobot-record \
|
||||
--robot.type=so100_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.cameras="{laptop: {type: opencv, camera_index: 0, width: 640, height: 480}}" \
|
||||
@@ -36,7 +36,7 @@ python -m lerobot.record \
|
||||
|
||||
Example recording with bimanual so100:
|
||||
```shell
|
||||
python -m lerobot.record \
|
||||
lerobot-record \
|
||||
--robot.type=bi_so100_follower \
|
||||
--robot.left_arm_port=/dev/tty.usbmodem5A460851411 \
|
||||
--robot.right_arm_port=/dev/tty.usbmodem5A460812391 \
|
||||
|
||||
@@ -18,7 +18,7 @@ Replays the actions of an episode from a dataset on a robot.
|
||||
Examples:
|
||||
|
||||
```shell
|
||||
python -m lerobot.replay \
|
||||
lerobot-replay \
|
||||
--robot.type=so100_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.id=black \
|
||||
@@ -28,7 +28,7 @@ python -m lerobot.replay \
|
||||
|
||||
Example replay with bimanual so100:
|
||||
```shell
|
||||
python -m lerobot.replay \
|
||||
lerobot-replay \
|
||||
--robot.type=bi_so100_follower \
|
||||
--robot.left_arm_port=/dev/tty.usbmodem5A460851411 \
|
||||
--robot.right_arm_port=/dev/tty.usbmodem5A460812391 \
|
||||
|
||||
@@ -141,10 +141,10 @@ python lerobot/scripts/control_robot.py \
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](../src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
To train a policy to control your robot, use the [`lerobot-train`](../src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--dataset.repo_id=${HF_USER}/aloha_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_aloha_test \
|
||||
|
||||
@@ -21,7 +21,7 @@ You want to evaluate a model from the hub (eg: https://huggingface.co/lerobot/di
|
||||
for 10 episodes.
|
||||
|
||||
```
|
||||
python -m lerobot.scripts.eval \
|
||||
lerobot-eval \
|
||||
--policy.path=lerobot/diffusion_pusht \
|
||||
--env.type=pusht \
|
||||
--eval.batch_size=10 \
|
||||
@@ -32,7 +32,7 @@ python -m lerobot.scripts.eval \
|
||||
|
||||
OR, you want to evaluate a model checkpoint from the LeRobot training script for 10 episodes.
|
||||
```
|
||||
python -m lerobot.scripts.eval \
|
||||
lerobot-eval \
|
||||
--policy.path=outputs/train/diffusion_pusht/checkpoints/005000/pretrained_model \
|
||||
--env.type=pusht \
|
||||
--eval.batch_size=10 \
|
||||
|
||||
@@ -18,7 +18,7 @@ Helper to set motor ids and baudrate.
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.setup_motors \
|
||||
lerobot-setup-motors \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem575E0031751
|
||||
```
|
||||
|
||||
@@ -18,7 +18,7 @@ Simple script to control a robot from teleoperation.
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.teleoperate \
|
||||
lerobot-teleoperate \
|
||||
--robot.type=so101_follower \
|
||||
--robot.port=/dev/tty.usbmodem58760431541 \
|
||||
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
|
||||
@@ -32,7 +32,7 @@ python -m lerobot.teleoperate \
|
||||
Example teleoperation with bimanual so100:
|
||||
|
||||
```shell
|
||||
python -m lerobot.teleoperate \
|
||||
lerobot-teleoperate \
|
||||
--robot.type=bi_so100_follower \
|
||||
--robot.left_arm_port=/dev/tty.usbmodem5A460851411 \
|
||||
--robot.right_arm_port=/dev/tty.usbmodem5A460812391 \
|
||||
|
||||
@@ -44,7 +44,7 @@ Below is the short version on how to train and run inference/eval:
|
||||
### Train from scratch
|
||||
|
||||
```bash
|
||||
python -m lerobot.scripts.train \
|
||||
lerobot-train \
|
||||
--dataset.repo_id=${HF_USER}/<dataset> \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/<desired_policy_repo_id> \
|
||||
@@ -59,7 +59,7 @@ _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
|
||||
### Evaluate the policy/run inference
|
||||
|
||||
```bash
|
||||
python -m lerobot.record \
|
||||
lerobot-record \
|
||||
--robot.type=so100_follower \
|
||||
--dataset.repo_id=<hf_user>/eval_<dataset> \
|
||||
--policy.path=<hf_user>/<desired_policy_repo_id> \
|
||||
|
||||
Reference in New Issue
Block a user