diff --git a/docs/source/il_robots.mdx b/docs/source/il_robots.mdx index 8c075e5b..ec5491b2 100644 --- a/docs/source/il_robots.mdx +++ b/docs/source/il_robots.mdx @@ -294,7 +294,7 @@ dataset.push_to_hub() #### Dataset upload -Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}`. At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running: +Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}`. At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. `https://huggingface.co/datasets/${HF_USER}/so101_test`) that you can obtain by running: ```bash echo https://huggingface.co/datasets/${HF_USER}/so101_test @@ -428,7 +428,7 @@ Your robot should replicate movements similar to those you recorded. For example ## Train a policy -To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](../src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command: +To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](https://github.com/huggingface/lerobot/blob/main/src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command: ```bash python -m lerobot.scripts.train \ @@ -444,7 +444,7 @@ python -m lerobot.scripts.train \ Let's explain the command: 1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`. -2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../src/lerobot/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset. +2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](https://github.com/huggingface/lerobot/blob/main/src/lerobot/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset. 3. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon. 4. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`. diff --git a/docs/source/il_sim.mdx b/docs/source/il_sim.mdx index 193b09b1..761e24e0 100644 --- a/docs/source/il_sim.mdx +++ b/docs/source/il_sim.mdx @@ -96,7 +96,7 @@ If you uploaded your dataset to the hub you can [visualize your dataset online]( ## Train a policy -To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](../src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command: +To train a policy to control your robot, use the [`python -m lerobot.scripts.train`](https://github.com/huggingface/lerobot/blob/main/src/lerobot/scripts/train.py) script. A few arguments are required. Here is an example command: ```bash python -m lerobot.scripts.train \ @@ -111,7 +111,7 @@ python -m lerobot.scripts.train \ Let's explain the command: 1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/il_gym`. -2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../src/lerobot/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset. +2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](https://github.com/huggingface/lerobot/blob/main/src/lerobot/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset. 3. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon. 4. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.