feat(train): add accelerate for multi gpu training (#2154)
* Enhance training and logging functionality with accelerator support - Added support for multi-GPU training by introducing an `accelerator` parameter in training functions. - Updated `update_policy` to handle gradient updates based on the presence of an accelerator. - Modified logging to prevent duplicate messages in non-main processes. - Enhanced `set_seed` and `get_safe_torch_device` functions to accommodate accelerator usage. - Updated `MetricsTracker` to account for the number of processes when calculating metrics. - Introduced a new feature in `pyproject.toml` for the `accelerate` library dependency. * Initialize logging in training script for both main and non-main processes - Added `init_logging` calls to ensure proper logging setup when using the accelerator and in standard training mode. - This change enhances the clarity and consistency of logging during training sessions. * add docs and only push model once * Place logging under accelerate and update docs * fix pre commit * only log in main process * main logging * try with local rank * add tests * change runner * fix test * dont push to hub in multi gpu tests * pre download dataset in tests * small fixes * fix path optimizer state * update docs, and small improvements in train * simplify accelerate main process detection * small improvements in train * fix OOM bug * change accelerate detection * add some debugging * always use accelerate * cleanup update method * cleanup * fix bug * scale lr decay if we reduce steps * cleanup logging * fix formatting * encorperate feedback pr * add min memory to cpu tests * use accelerate to determin logging * fix precommit and fix tests * chore: minor details --------- Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co>
This commit is contained in:
33
.github/workflows/nightly.yml
vendored
33
.github/workflows/nightly.yml
vendored
@@ -119,6 +119,7 @@ jobs:
|
||||
TRITON_CACHE_DIR: /home/user_lerobot/.cache/triton
|
||||
container:
|
||||
image: ${{ needs.build-docker-cpu-nightly.outputs.image_tag }} # zizmor: ignore[unpinned-images]
|
||||
options: --shm-size "16gb"
|
||||
credentials:
|
||||
username: ${{ secrets.DOCKERHUB_LEROBOT_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_LEROBOT_PASSWORD }}
|
||||
@@ -158,3 +159,35 @@ jobs:
|
||||
run: pytest tests -vv --maxfail=10
|
||||
- name: Run end-to-end tests
|
||||
run: make test-end-to-end
|
||||
|
||||
# This job runs multi-GPU training tests with 4 GPUs
|
||||
nightly-multi-gpu-tests:
|
||||
name: Nightly Multi-GPU Tests
|
||||
needs: [build-docker-gpu-nightly]
|
||||
runs-on:
|
||||
group: aws-g4dn-12xlarge # Instance with 4 GPUs
|
||||
env:
|
||||
HF_HOME: /home/user_lerobot/.cache/huggingface
|
||||
HF_LEROBOT_HOME: /home/user_lerobot/.cache/huggingface/lerobot
|
||||
TORCH_HOME: /home/user_lerobot/.cache/torch
|
||||
TRITON_CACHE_DIR: /home/user_lerobot/.cache/triton
|
||||
CUDA_VISIBLE_DEVICES: "0,1,2,3"
|
||||
container:
|
||||
image: ${{ needs.build-docker-gpu-nightly.outputs.image_tag }} # zizmor: ignore[unpinned-images]
|
||||
options: --gpus all --shm-size "16gb"
|
||||
credentials:
|
||||
username: ${{ secrets.DOCKERHUB_LEROBOT_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_LEROBOT_PASSWORD }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: /lerobot
|
||||
steps:
|
||||
- name: Verify GPU availability
|
||||
run: |
|
||||
nvidia-smi
|
||||
python -c "import torch; print(f'PyTorch CUDA available: {torch.cuda.is_available()}'); print(f'Number of GPUs: {torch.cuda.device_count()}')"
|
||||
|
||||
- name: Run multi-GPU training tests
|
||||
run: pytest tests/training/test_multi_gpu.py -vv --maxfail=3
|
||||
timeout-minutes: 10
|
||||
|
||||
Reference in New Issue
Block a user