Release cleanup (#132)

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Cadene <re.cadene@gmail.com>
This commit is contained in:
Simon Alibert
2024-05-06 03:03:14 +02:00
committed by GitHub
parent 6eaffbef1d
commit f5e76393eb
19 changed files with 312 additions and 237 deletions

View File

@@ -14,6 +14,7 @@ The script ends with examples of how to batch process data using PyTorch's DataL
"""
from pathlib import Path
from pprint import pprint
import imageio
import torch
@@ -21,39 +22,36 @@ import torch
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
print("List of available datasets", lerobot.available_datasets)
# # >>> ['lerobot/aloha_sim_insertion_human', 'lerobot/aloha_sim_insertion_scripted',
# # 'lerobot/aloha_sim_transfer_cube_human', 'lerobot/aloha_sim_transfer_cube_scripted',
# # 'lerobot/pusht', 'lerobot/xarm_lift_medium']
print("List of available datasets:")
pprint(lerobot.available_datasets)
# Let's take one for this example
repo_id = "lerobot/pusht"
# You can easily load a dataset from a Hugging Face repositery
# You can easily load a dataset from a Hugging Face repository
dataset = LeRobotDataset(repo_id)
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset (see https://huggingface.co/docs/datasets/index for more information).
# TODO(rcadene): update to make the print pretty
print(f"{dataset=}")
print(f"{dataset.hf_dataset=}")
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets/index for more information).
print(dataset)
print(dataset.hf_dataset)
# and provides additional utilities for robotics and compatibility with pytorch
print(f"number of samples/frames: {dataset.num_samples=}")
print(f"number of episodes: {dataset.num_episodes=}")
print(f"average number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
# And provides additional utilities for robotics and compatibility with Pytorch
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
print(f"frames per second used during data collection: {dataset.fps=}")
print(f"keys to access images from cameras: {dataset.image_keys=}")
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
# Access frame indexes associated to first episode
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working with the latter, like iterating through the dataset.
# Here we grab all the image frames.
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset. Here we grab all the image frames.
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention.
# To visualize them, we convert to uint8 range [0,255]
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
# them, we convert to uint8 in range [0,255]
frames = [(frame * 255).type(torch.uint8) for frame in frames]
# and to channel last (h,w,c).
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
@@ -62,9 +60,9 @@ frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
# For many machine learning applications we need to load the history of past observations or trajectories of future actions.
# Our datasets can load previous and future frames for each key/modality,
# using timestamps differences with the current loaded frame. For instance:
# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
"observation.image": [-1, -0.5, -0.20, 0],
@@ -74,12 +72,12 @@ delta_timestamps = {
"action": [t / dataset.fps for t in range(64)],
}
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
print(f"{dataset[0]['action'].shape=}") # (64,c)
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers
# because they are just PyTorch datasets.
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,

View File

@@ -5,23 +5,108 @@ training outputs directory. In the latter case, you might want to run examples/3
from pathlib import Path
import gym_pusht # noqa: F401
import gymnasium as gym
import imageio
import numpy
import torch
from huggingface_hub import snapshot_download
from lerobot.scripts.eval import eval
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
# Get a pretrained policy from the hub.
pretrained_policy_name = "lerobot/diffusion_pusht"
pretrained_policy_path = Path(snapshot_download(pretrained_policy_name))
# Create a directory to store the video of the evaluation
output_directory = Path("outputs/eval/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
# Override some config parameters to do with evaluation.
overrides = [
"eval.n_episodes=10",
"eval.batch_size=10",
"device=cuda",
]
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
policy.to(device)
# Evaluate the policy and save the outputs including metrics and videos.
# TODO(rcadene, alexander-soare): dont call eval, but add the minimal code snippet to rollout
eval(pretrained_policy_path=pretrained_policy_path)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment
# also automatically stops running after 300 interactions/steps.
env = gym.make(
"gym_pusht/PushT-v0",
obs_type="pixels_agent_pos",
max_episode_steps=300,
)
# Reset the policy and environmens to prepare for rollout
policy.reset()
numpy_observation, info = env.reset(seed=42)
# Prepare to collect every rewards and all the frames of the episode,
# from initial state to final state.
rewards = []
frames = []
# Render frame of the initial state
frames.append(env.render())
step = 0
done = False
while not done:
# Prepare observation for the policy running in Pytorch
state = torch.from_numpy(numpy_observation["agent_pos"])
image = torch.from_numpy(numpy_observation["pixels"])
# Convert to float32 with image from channel first in [0,255]
# to channel last in [0,1]
state = state.to(torch.float32)
image = image.to(torch.float32) / 255
image = image.permute(2, 0, 1)
# Send data tensors from CPU to GPU
state = state.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
# Add extra (empty) batch dimension, required to forward the policy
state = state.unsqueeze(0)
image = image.unsqueeze(0)
# Create the policy input dictionary
observation = {
"observation.state": state,
"observation.image": image,
}
# Predict the next action with respect to the current observation
with torch.inference_mode():
action = policy.select_action(observation)
# Prepare the action for the environment
numpy_action = action.squeeze(0).to("cpu").numpy()
# Step through the environment and receive a new observation
numpy_observation, reward, terminated, truncated, info = env.step(numpy_action)
print(f"{step=} {reward=} {terminated=}")
# Keep track of all the rewards and frames
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reach (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1
if terminated:
print("Success!")
else:
print("Failure!")
# Get the speed of environment (i.e. its number of frames per second).
fps = env.metadata["render_fps"]
# Encode all frames into a mp4 video.
video_path = output_directory / "rollout.mp4"
imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps)
print(f"Video of the evaluation is available in '{video_path}'.")

View File

@@ -4,36 +4,42 @@ Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
"""
import os
from pathlib import Path
import torch
from omegaconf import OmegaConf
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.common.utils.utils import init_hydra_config
# Create a directory to store the training checkpoint.
output_directory = Path("outputs/train/example_pusht_diffusion")
os.makedirs(output_directory, exist_ok=True)
output_directory.mkdir(parents=True, exist_ok=True)
# Number of offline training steps (we'll only do offline training for this example.
# Number of offline training steps (we'll only do offline training for this example.)
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
training_steps = 5000
device = torch.device("cuda")
log_freq = 250
# Set up the dataset.
hydra_cfg = init_hydra_config("lerobot/configs/default.yaml", overrides=["env=pusht"])
dataset = make_dataset(hydra_cfg)
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
# Set up the the policy.
# Policies are initialized with a configuration class, in this case `DiffusionConfig`.
# For this example, no arguments need to be passed because the defaults are set up for PushT.
# If you're doing something different, you will likely need to change at least some of the defaults.
cfg = DiffusionConfig()
# TODO(alexander-soare): Remove LR scheduler from the policy.
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
policy.train()
policy.to(device)
@@ -69,7 +75,5 @@ while not done:
done = True
break
# Save the policy.
# Save a policy checkpoint.
policy.save_pretrained(output_directory)
# Save the Hydra configuration so we have the environment configuration for eval.
OmegaConf.save(hydra_cfg, output_directory / "config.yaml")