Add data augmentation in LeRobotDataset (#234)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com> Co-authored-by: Remi Cadene <re.cadene@gmail.com>
This commit is contained in:
committed by
GitHub
parent
1cf050d412
commit
ff8f6aa6cd
86
tests/scripts/save_image_transforms_to_safetensors.py
Normal file
86
tests/scripts/save_image_transforms_to_safetensors.py
Normal file
@@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from safetensors.torch import save_file
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.transforms import get_image_transforms
|
||||
from lerobot.common.utils.utils import init_hydra_config, seeded_context
|
||||
from tests.test_image_transforms import ARTIFACT_DIR, DATASET_REPO_ID
|
||||
from tests.utils import DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
def save_default_config_transform(original_frame: torch.Tensor, output_dir: Path):
|
||||
cfg = init_hydra_config(DEFAULT_CONFIG_PATH)
|
||||
cfg_tf = cfg.training.image_transforms
|
||||
default_tf = get_image_transforms(
|
||||
brightness_weight=cfg_tf.brightness.weight,
|
||||
brightness_min_max=cfg_tf.brightness.min_max,
|
||||
contrast_weight=cfg_tf.contrast.weight,
|
||||
contrast_min_max=cfg_tf.contrast.min_max,
|
||||
saturation_weight=cfg_tf.saturation.weight,
|
||||
saturation_min_max=cfg_tf.saturation.min_max,
|
||||
hue_weight=cfg_tf.hue.weight,
|
||||
hue_min_max=cfg_tf.hue.min_max,
|
||||
sharpness_weight=cfg_tf.sharpness.weight,
|
||||
sharpness_min_max=cfg_tf.sharpness.min_max,
|
||||
max_num_transforms=cfg_tf.max_num_transforms,
|
||||
random_order=cfg_tf.random_order,
|
||||
)
|
||||
|
||||
with seeded_context(1337):
|
||||
img_tf = default_tf(original_frame)
|
||||
|
||||
save_file({"default": img_tf}, output_dir / "default_transforms.safetensors")
|
||||
|
||||
|
||||
def save_single_transforms(original_frame: torch.Tensor, output_dir: Path):
|
||||
transforms = {
|
||||
"brightness": [(0.5, 0.5), (2.0, 2.0)],
|
||||
"contrast": [(0.5, 0.5), (2.0, 2.0)],
|
||||
"saturation": [(0.5, 0.5), (2.0, 2.0)],
|
||||
"hue": [(-0.25, -0.25), (0.25, 0.25)],
|
||||
"sharpness": [(0.5, 0.5), (2.0, 2.0)],
|
||||
}
|
||||
|
||||
frames = {"original_frame": original_frame}
|
||||
for transform, values in transforms.items():
|
||||
for min_max in values:
|
||||
kwargs = {
|
||||
f"{transform}_weight": 1.0,
|
||||
f"{transform}_min_max": min_max,
|
||||
}
|
||||
tf = get_image_transforms(**kwargs)
|
||||
key = f"{transform}_{min_max[0]}_{min_max[1]}"
|
||||
frames[key] = tf(original_frame)
|
||||
|
||||
save_file(frames, output_dir / "single_transforms.safetensors")
|
||||
|
||||
|
||||
def main():
|
||||
dataset = LeRobotDataset(DATASET_REPO_ID, image_transforms=None)
|
||||
output_dir = Path(ARTIFACT_DIR)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
original_frame = dataset[0][dataset.camera_keys[0]]
|
||||
|
||||
save_single_transforms(original_frame, output_dir)
|
||||
save_default_config_transform(original_frame, output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user