Compare commits
1 Commits
fix_path
...
user/alexa
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
315cbcb422 |
3126
.github/poetry/cpu/poetry.lock
generated
vendored
3126
.github/poetry/cpu/poetry.lock
generated
vendored
File diff suppressed because it is too large
Load Diff
107
.github/poetry/cpu/pyproject.toml
vendored
107
.github/poetry/cpu/pyproject.toml
vendored
@@ -1,107 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "lerobot"
|
||||
version = "0.1.0"
|
||||
description = "Le robot is learning"
|
||||
authors = [
|
||||
"Rémi Cadène <re.cadene@gmail.com>",
|
||||
"Simon Alibert <alibert.sim@gmail.com>",
|
||||
]
|
||||
repository = "https://github.com/Cadene/lerobot"
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
]
|
||||
packages = [{include = "lerobot"}]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
termcolor = "^2.4.0"
|
||||
omegaconf = "^2.3.0"
|
||||
dm-env = "^1.6"
|
||||
pandas = "^2.2.1"
|
||||
wandb = "^0.16.3"
|
||||
moviepy = "^1.0.3"
|
||||
imageio = {extras = ["pyav"], version = "^2.34.0"}
|
||||
gdown = "^5.1.0"
|
||||
hydra-core = "^1.3.2"
|
||||
einops = "^0.7.0"
|
||||
pygame = "^2.5.2"
|
||||
pymunk = "^6.6.0"
|
||||
zarr = "^2.17.0"
|
||||
shapely = "^2.0.3"
|
||||
scikit-image = "^0.22.0"
|
||||
numba = "^0.59.0"
|
||||
mpmath = "^1.3.0"
|
||||
torch = {version = "^2.2.1", source = "torch-cpu"}
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "^3.1.2"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = {version = "^0.17.1", source = "torch-cpu"}
|
||||
h5py = "^3.10.0"
|
||||
dm = "^1.3"
|
||||
dm-control = "^1.0.16"
|
||||
huggingface-hub = "^0.21.4"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "torch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
priority = "supplemental"
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 110
|
||||
target-version = "py310"
|
||||
exclude = [
|
||||
".bzr",
|
||||
".direnv",
|
||||
".eggs",
|
||||
".git",
|
||||
".git-rewrite",
|
||||
".hg",
|
||||
".mypy_cache",
|
||||
".nox",
|
||||
".pants.d",
|
||||
".pytype",
|
||||
".ruff_cache",
|
||||
".svn",
|
||||
".tox",
|
||||
".venv",
|
||||
"__pypackages__",
|
||||
"_build",
|
||||
"buck-out",
|
||||
"build",
|
||||
"dist",
|
||||
"node_modules",
|
||||
"venv",
|
||||
]
|
||||
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
|
||||
|
||||
|
||||
[tool.poetry-dynamic-versioning]
|
||||
enable = true
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
|
||||
build-backend = "poetry_dynamic_versioning.backend"
|
||||
20
.github/workflows/test.yml
vendored
20
.github/workflows/test.yml
vendored
@@ -46,8 +46,8 @@ jobs:
|
||||
id: restore-poetry-cache
|
||||
uses: actions/cache/restore@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
path: ~/.local # the path depends on the OS
|
||||
key: poetry-${{ env.POETRY_VERSION }} # increment to reset cache
|
||||
|
||||
- name: Install Poetry
|
||||
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
|
||||
@@ -64,8 +64,8 @@ jobs:
|
||||
id: save-poetry-cache
|
||||
uses: actions/cache/save@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
path: ~/.local # the path depends on the OS
|
||||
key: poetry-${{ env.POETRY_VERSION }} # increment to reset cache
|
||||
|
||||
- name: Configure Poetry
|
||||
run: poetry config virtualenvs.in-project true
|
||||
@@ -73,10 +73,6 @@ jobs:
|
||||
#----------------------------------------------
|
||||
# install dependencies
|
||||
#----------------------------------------------
|
||||
# TODO(aliberts): move to gpu runners
|
||||
- name: Select cpu dependencies # HACK
|
||||
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
|
||||
|
||||
- name: Load cached venv
|
||||
id: restore-dependencies-cache
|
||||
uses: actions/cache/restore@v3
|
||||
@@ -84,10 +80,18 @@ jobs:
|
||||
path: .venv
|
||||
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
|
||||
|
||||
- name: Info
|
||||
run: |
|
||||
sudo du -sh /tmp
|
||||
sudo df -h
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
mkdir ~/tmp
|
||||
echo $TMPDIR
|
||||
echo $TEMP
|
||||
echo $TMP
|
||||
poetry install --no-interaction --no-root
|
||||
|
||||
- name: Save cached venv
|
||||
|
||||
31
README.md
31
README.md
@@ -103,18 +103,6 @@ pre-commit install
|
||||
pre-commit run -a
|
||||
```
|
||||
|
||||
**Adding dependencies (temporary)**
|
||||
|
||||
Right now, for the CI to work, whenever a new dependency is added it needs to be also added to the cpu env, eg:
|
||||
|
||||
```
|
||||
# Run in this directory, adds the package to the main env with cuda
|
||||
poetry add some-package
|
||||
|
||||
# Adds the same package to the cpu env
|
||||
cd .github/poetry/cpu && poetry add some-package
|
||||
```
|
||||
|
||||
**Tests**
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
@@ -146,25 +134,6 @@ Run tests
|
||||
DATA_DIR="tests/data" pytest -sx tests
|
||||
```
|
||||
|
||||
**Datasets**
|
||||
|
||||
To add a pytorch rl dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
|
||||
```
|
||||
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential
|
||||
```
|
||||
|
||||
Then you can upload it to the hub with:
|
||||
```
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload --repo-type dataset $HF_USER/$DATASET data/$DATASET
|
||||
```
|
||||
|
||||
For instance, for [cadene/pusht](https://huggingface.co/datasets/cadene/pusht), we used:
|
||||
```
|
||||
HF_USER=cadene
|
||||
DATASET=pusht
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgment
|
||||
- Our Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
|
||||
- Our TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import abc
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
@@ -6,8 +7,8 @@ import einops
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.datasets.utils import _get_root_dir
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
@@ -22,7 +23,7 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
root: Path = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
@@ -32,8 +33,11 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
):
|
||||
self.dataset_id = dataset_id
|
||||
self.shuffle = shuffle
|
||||
self.root = root
|
||||
storage = self._download_or_load_dataset()
|
||||
self.root = _get_root_dir(self.dataset_id) if root is None else root
|
||||
self.root = Path(self.root)
|
||||
self.data_dir = self.root / self.dataset_id
|
||||
|
||||
storage = self._download_or_load_storage()
|
||||
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
@@ -85,7 +89,7 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
self._transform = transform
|
||||
|
||||
def compute_or_load_stats(self, num_batch=100, batch_size=32) -> TensorDict:
|
||||
stats_path = Path(self.data_dir) / "stats.pth"
|
||||
stats_path = self.data_dir / "stats.pth"
|
||||
if stats_path.exists():
|
||||
stats = torch.load(stats_path)
|
||||
else:
|
||||
@@ -94,12 +98,19 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
torch.save(stats, stats_path)
|
||||
return stats
|
||||
|
||||
def _download_or_load_dataset(self) -> torch.StorageBase:
|
||||
if self.root is None:
|
||||
self.data_dir = snapshot_download(repo_id=f"cadene/{self.dataset_id}", repo_type="dataset")
|
||||
@abc.abstractmethod
|
||||
def _download_and_preproc(self) -> torch.StorageBase:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _download_or_load_storage(self):
|
||||
if not self._is_downloaded():
|
||||
storage = self._download_and_preproc()
|
||||
else:
|
||||
self.data_dir = self.root / self.dataset_id
|
||||
return TensorStorage(TensorDict.load_memmap(self.data_dir))
|
||||
storage = TensorStorage(TensorDict.load_memmap(self.data_dir))
|
||||
return storage
|
||||
|
||||
def _is_downloaded(self) -> bool:
|
||||
return self.data_dir.is_dir()
|
||||
|
||||
def _compute_stats(self, num_batch=100, batch_size=32):
|
||||
rb = TensorDictReplayBuffer(
|
||||
|
||||
@@ -87,7 +87,7 @@ class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
root: Path = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
@@ -124,9 +124,8 @@ class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
def _download_and_preproc(self):
|
||||
raw_dir = self.data_dir.parent / f"{self.data_dir.name}_raw"
|
||||
if not raw_dir.is_dir():
|
||||
download(raw_dir, self.dataset_id)
|
||||
|
||||
@@ -175,7 +174,7 @@ class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
|
||||
if ep_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.data_dir)
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
idxtd = idxtd + len(ep_td)
|
||||
|
||||
@@ -7,10 +7,7 @@ from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
|
||||
|
||||
from lerobot.common.envs.transforms import NormalizeTransform, Prod
|
||||
|
||||
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
|
||||
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
|
||||
# to load a subset of our datasets for faster continuous integration.
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
DATA_DIR = Path(os.environ.get("DATA_DIR", "data"))
|
||||
|
||||
|
||||
def make_offline_buffer(
|
||||
@@ -80,9 +77,9 @@ def make_offline_buffer(
|
||||
|
||||
offline_buffer = clsfunc(
|
||||
dataset_id=dataset_id,
|
||||
root=DATA_DIR,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
root=DATA_DIR,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
)
|
||||
|
||||
@@ -90,7 +90,7 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
root: Path = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
@@ -111,9 +111,8 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
def _download_and_preproc(self):
|
||||
raw_dir = self.data_dir.parent / f"{self.data_dir.name}_raw"
|
||||
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
|
||||
if not zarr_path.is_dir():
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
@@ -209,7 +208,7 @@ class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = ep_td[0].expand(total_frames).memmap_like(self.data_dir)
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
|
||||
|
||||
@@ -43,7 +43,7 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
root: Path = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
@@ -64,12 +64,11 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
def _download_and_preproc(self):
|
||||
# TODO(rcadene): finish download
|
||||
download()
|
||||
|
||||
dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
|
||||
dataset_path = self.data_dir / "buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
with open(dataset_path, "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
@@ -111,7 +110,7 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.data_dir)
|
||||
|
||||
td_data[idx0:idx1] = episode
|
||||
|
||||
|
||||
@@ -4,9 +4,113 @@ from typing import Optional
|
||||
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.utils import _terminated_or_truncated, step_mdp
|
||||
|
||||
|
||||
class AbstractEnv(EnvBase):
|
||||
class EnvBaseWithMultiStepRollouts(EnvBase):
|
||||
"""Adds handling of policies that output action trajectories to be execute with a fixed horizon."""
|
||||
|
||||
def _rollout_stop_early(
|
||||
self,
|
||||
*,
|
||||
tensordict,
|
||||
auto_cast_to_device,
|
||||
max_steps,
|
||||
policy,
|
||||
policy_device,
|
||||
env_device,
|
||||
callback,
|
||||
):
|
||||
"""Override adds handling of multi-step policies."""
|
||||
tensordicts = []
|
||||
step_ix = 0
|
||||
do_break = False
|
||||
while not do_break:
|
||||
if auto_cast_to_device:
|
||||
if policy_device is not None:
|
||||
tensordict = tensordict.to(policy_device, non_blocking=True)
|
||||
else:
|
||||
tensordict.clear_device_()
|
||||
tensordict = policy(tensordict)
|
||||
if auto_cast_to_device:
|
||||
if env_device is not None:
|
||||
tensordict = tensordict.to(env_device, non_blocking=True)
|
||||
else:
|
||||
tensordict.clear_device_()
|
||||
|
||||
for action in tensordict["action"].clone():
|
||||
tensordict["action"] = action
|
||||
tensordict = self.step(tensordict)
|
||||
tensordicts.append(tensordict.clone(False))
|
||||
|
||||
if step_ix == max_steps - 1:
|
||||
# we don't truncated as one could potentially continue the run
|
||||
do_break = True
|
||||
break
|
||||
tensordict = step_mdp(
|
||||
tensordict,
|
||||
keep_other=True,
|
||||
exclude_action=False,
|
||||
exclude_reward=True,
|
||||
reward_keys=self.reward_keys,
|
||||
action_keys=self.action_keys,
|
||||
done_keys=self.done_keys,
|
||||
)
|
||||
# done and truncated are in done_keys
|
||||
# We read if any key is done.
|
||||
any_done = _terminated_or_truncated(
|
||||
tensordict,
|
||||
full_done_spec=self.output_spec["full_done_spec"],
|
||||
key=None,
|
||||
)
|
||||
if any_done:
|
||||
break
|
||||
|
||||
if callback is not None:
|
||||
callback(self, tensordict)
|
||||
|
||||
step_ix += 1
|
||||
|
||||
return tensordicts
|
||||
|
||||
def _rollout_nonstop(
|
||||
self,
|
||||
*,
|
||||
tensordict,
|
||||
auto_cast_to_device,
|
||||
max_steps,
|
||||
policy,
|
||||
policy_device,
|
||||
env_device,
|
||||
callback,
|
||||
):
|
||||
"""Override adds handling of multi-step policies."""
|
||||
tensordicts = []
|
||||
tensordict_ = tensordict
|
||||
for i in range(max_steps):
|
||||
if auto_cast_to_device:
|
||||
if policy_device is not None:
|
||||
tensordict_ = tensordict_.to(policy_device, non_blocking=True)
|
||||
else:
|
||||
tensordict_.clear_device_()
|
||||
tensordict_ = policy(tensordict_)
|
||||
if auto_cast_to_device:
|
||||
if env_device is not None:
|
||||
tensordict_ = tensordict_.to(env_device, non_blocking=True)
|
||||
else:
|
||||
tensordict_.clear_device_()
|
||||
tensordict, tensordict_ = self.step_and_maybe_reset(tensordict_)
|
||||
tensordicts.append(tensordict)
|
||||
if i == max_steps - 1:
|
||||
# we don't truncated as one could potentially continue the run
|
||||
break
|
||||
if callback is not None:
|
||||
callback(self, tensordict)
|
||||
|
||||
return tensordicts
|
||||
|
||||
|
||||
class AbstractEnv(EnvBaseWithMultiStepRollouts):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
|
||||
@@ -4,7 +4,16 @@ import torch
|
||||
from tensordict import TensorDictBase
|
||||
from tensordict.nn import dispatch
|
||||
from tensordict.utils import NestedKey
|
||||
from torchrl.envs.transforms import ObservationTransform, Transform
|
||||
from torchrl.envs.transforms import ObservationTransform, Transform, TransformedEnv
|
||||
from torchrl.envs.transforms.transforms import _TEnvPostInit
|
||||
|
||||
from lerobot.common.envs.abstract import EnvBaseWithMultiStepRollouts
|
||||
|
||||
|
||||
class TransformedEnv(EnvBaseWithMultiStepRollouts, TransformedEnv, metaclass=_TEnvPostInit):
|
||||
"""Keep method overrides from EnvBaseWithMultiStepRollouts."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class Prod(ObservationTransform):
|
||||
|
||||
75
poetry.lock
generated
75
poetry.lock
generated
@@ -838,78 +838,6 @@ files = [
|
||||
[package.dependencies]
|
||||
numpy = ">=1.17.3"
|
||||
|
||||
[[package]]
|
||||
name = "hf-transfer"
|
||||
version = "0.1.6"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6fd3d61f9229d27def007e53540412507b74ac2fdb1a29985ae0b6a5137749a2"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b043bb78df1225de043eb041de9d97783fcca14a0bdc1b1d560fc172fc21b648"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7db60dd18eae4fa6ea157235fb82196cde5313995b396d1b591aad3b790a7f8f"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:30d31dbab9b5a558cce407b8728e39d87d7af1ef8745ddb90187e9ae0b9e1e90"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f6b368bddd757efc7af3126ba81f9ac8f9435e2cc00902cb3d64f2be28d8f719"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa2086d8aefaaa3e144e167324574882004c0cec49bf2d0638ec4b74732d8da0"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:45d8985a0940bfe1535cb4ca781f5c11e47c83798ef3373ee1f5d57bbe527a9c"},
|
||||
{file = "hf_transfer-0.1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f42b89735f1cde22f2a795d1f0915741023235666be7de45879e533c7d6010c"},
|
||||
{file = "hf_transfer-0.1.6-cp310-none-win32.whl", hash = "sha256:2d2c4c4613f3ad45b6ce6291e347b2d3ba1b86816635681436567e461cb3c961"},
|
||||
{file = "hf_transfer-0.1.6-cp310-none-win_amd64.whl", hash = "sha256:78b0eed8d8dce60168a46e584b9742b816af127d7e410a713e12c31249195342"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:f1d8c172153f9a6cdaecf137612c42796076f61f6bea1072c90ac2e17c1ab6fa"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2c601996351f90c514a75a0eeb02bf700b1ad1db2d946cbfe4b60b79e29f0b2f"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e585c808405557d3f5488f385706abb696997bbae262ea04520757e30836d9d"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ec51af1e8cf4268c268bd88932ade3d7ca895a3c661b42493503f02610ae906b"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d106fdf996332f6df3ed3fab6d6332df82e8c1fb4b20fd81a491ca4d2ab5616a"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e9c2ee9e9fde5a0319cc0e8ddfea10897482bc06d5709b10a238f1bc2ebcbc0b"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f394ea32bc7802b061e549d3133efc523b4ae4fd19bf4b74b183ca6066eef94e"},
|
||||
{file = "hf_transfer-0.1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4282f09902114cd67fca98a1a1bad569a44521a8395fedf327e966714f68b977"},
|
||||
{file = "hf_transfer-0.1.6-cp311-none-win32.whl", hash = "sha256:276dbf307d5ab6f1bcbf57b5918bfcf9c59d6848ccb28242349e1bb5985f983b"},
|
||||
{file = "hf_transfer-0.1.6-cp311-none-win_amd64.whl", hash = "sha256:fa475175c51451186bea804471995fa8e7b2a48a61dcca55534911dc25955527"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:23d157a67acfa00007799323a1c441b2bbacc7dee625b016b7946fe0e25e6c89"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6067342a2864b988f861cd2d31bd78eb1e84d153a3f6df38485b6696d9ad3013"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91cfcb3070e205b58fa8dc8bcb6a62ccc40913fcdb9cd1ff7c364c8e3aa85345"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb76064ac5165d5eeaaf8d0903e8bf55477221ecc2a4a4d69f0baca065ab905b"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dabd3a177d83028f164984cf4dd859f77ec1e20c97a6f307ff8fcada0785ef1"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0bf4254e44f64a26e0a5b73b5d7e8d91bb36870718fb4f8e126ec943ff4c805"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d32c1b106f38f336ceb21531f4db9b57d777b9a33017dafdb6a5316388ebe50"},
|
||||
{file = "hf_transfer-0.1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff05aba3c83921e5c7635ba9f07c693cc893350c447644824043aeac27b285f5"},
|
||||
{file = "hf_transfer-0.1.6-cp312-none-win32.whl", hash = "sha256:051ef0c55607652cb5974f59638da035773254b9a07d7ee5b574fe062de4c9d1"},
|
||||
{file = "hf_transfer-0.1.6-cp312-none-win_amd64.whl", hash = "sha256:716fb5c574fcbdd8092ce73f9b6c66f42e3544337490f77c60ec07df02bd081b"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c0c981134a55965e279cb7be778c1ccaf93f902fc9ebe31da4f30caf824cc4d"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1ef1f145f04c5b573915bcb1eb5db4039c74f6b46fce73fc473c4287e613b623"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d0a7609b004db3347dbb7796df45403eceb171238210d054d93897d6d84c63a4"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:60f0864bf5996773dbd5f8ae4d1649041f773fe9d5769f4c0eeb5553100acef3"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d01e55d630ffe70a4f5d0ed576a04c6a48d7c65ca9a7d18f2fca385f20685a9"},
|
||||
{file = "hf_transfer-0.1.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d855946c5062b665190de15b2bdbd4c8eddfee35350bfb7564592e23d36fbbd3"},
|
||||
{file = "hf_transfer-0.1.6-cp37-none-win32.whl", hash = "sha256:fd40b2409cfaf3e8aba20169ee09552f69140e029adeec261b988903ff0c8f6f"},
|
||||
{file = "hf_transfer-0.1.6-cp37-none-win_amd64.whl", hash = "sha256:0e0eba49d46d3b5481919aea0794aec625fbc6ecdf13fe7e0e9f3fc5d5ad5971"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e669fecb29fc454449739f9f53ed9253197e7c19e6a6eaa0f08334207af4287"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:89f701802892e5eb84f89f402686861f87dc227d6082b05f4e9d9b4e8015a3c3"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6f2b0c8b95b01409275d789a9b74d5f2e146346f985d384bf50ec727caf1ccc"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa855a2fa262792a230f9efcdb5da6d431b747d1861d2a69fe7834b19aea077e"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa8ca349afb2f0713475426946261eb2035e4efb50ebd2c1d5ad04f395f4217"},
|
||||
{file = "hf_transfer-0.1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01255f043996bc7d1bae62d8afc5033a90c7e36ce308b988eeb84afe0a69562f"},
|
||||
{file = "hf_transfer-0.1.6-cp38-none-win32.whl", hash = "sha256:60b1db183e8a7540cd4f8b2160ff4de55f77cb0c3fc6a10be1e7c30eb1b2bdeb"},
|
||||
{file = "hf_transfer-0.1.6-cp38-none-win_amd64.whl", hash = "sha256:fb8be3cba6aaa50ab2e9dffbd25c8eb2046785eeff642cf0cdd0dd9ae6be3539"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d09af35e3e3f09b664e6429e9a0dc200f29c5bdfd88bdd9666de51183b1fe202"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a4505bd707cc14d85c800f961fad8ca76f804a8ad22fbb7b1a217d8d0c15e6a5"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2c453fd8b0be9740faa23cecd1f28ee9ead7d900cefa64ff836960c503a744c9"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13cb8884e718a78c3b81a8cdec9c7ac196dd42961fce55c3ccff3dd783e5ad7a"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39cd39df171a2b5404de69c4e6cd14eee47f6fe91c1692f939bfb9e59a0110d8"},
|
||||
{file = "hf_transfer-0.1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ff0629ee9f98df57a783599602eb498f9ec3619dc69348b12e4d9d754abf0e9"},
|
||||
{file = "hf_transfer-0.1.6-cp39-none-win32.whl", hash = "sha256:164a6ce445eb0cc7c645f5b6e1042c003d33292520c90052b6325f30c98e4c5f"},
|
||||
{file = "hf_transfer-0.1.6-cp39-none-win_amd64.whl", hash = "sha256:11b8b4b73bf455f13218c5f827698a30ae10998ca31b8264b51052868c7a9f11"},
|
||||
{file = "hf_transfer-0.1.6-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:16957ba057376a99ea361074ce1094f61b58e769defa6be2422ae59c0b6a6530"},
|
||||
{file = "hf_transfer-0.1.6-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7db952112e3b8ee1a5cbf500d2443e9ce4fb893281c5310a3e31469898628005"},
|
||||
{file = "hf_transfer-0.1.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d39d826a7344f5e39f438d62632acd00467aa54a083b66496f61ef67a9885a56"},
|
||||
{file = "hf_transfer-0.1.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4e2653fbfa92e7651db73d99b697c8684e7345c479bd6857da80bed6138abb2"},
|
||||
{file = "hf_transfer-0.1.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:144277e6a86add10b90ec3b583253aec777130312256bfc8d5ade5377e253807"},
|
||||
{file = "hf_transfer-0.1.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3bb53bcd16365313b2aa0dbdc28206f577d70770f31249cdabc387ac5841edcc"},
|
||||
{file = "hf_transfer-0.1.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:990d73a5a68d8261980f146c51f4c5f9995314011cb225222021ad7c39f3af2d"},
|
||||
{file = "hf_transfer-0.1.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:652406037029ab9b4097b4c5f29321bad5f64c2b46fbff142509d918aec87c29"},
|
||||
{file = "hf_transfer-0.1.6.tar.gz", hash = "sha256:deb505a7d417d7055fd7b3549eadb91dfe782941261f3344025c486c16d1d2f9"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "huggingface-hub"
|
||||
version = "0.21.4"
|
||||
@@ -924,7 +852,6 @@ files = [
|
||||
[package.dependencies]
|
||||
filelock = "*"
|
||||
fsspec = ">=2023.5.0"
|
||||
hf-transfer = {version = ">=0.1.4", optional = true, markers = "extra == \"hf_transfer\""}
|
||||
packaging = ">=20.9"
|
||||
pyyaml = ">=5.1"
|
||||
requests = "*"
|
||||
@@ -3327,4 +3254,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "ee86b84a795e6a3e9c2d79f244a87b55589adbe46d549ac38adf48be27c04cf9"
|
||||
content-hash = "3d82309a7b2388d774b56ceb6f6906ef0732d8cedda0d76cc84a30e239949be8"
|
||||
|
||||
@@ -50,7 +50,6 @@ diffusers = "^0.26.3"
|
||||
torchvision = "^0.17.1"
|
||||
h5py = "^3.10.0"
|
||||
dm-control = "1.0.14"
|
||||
huggingface-hub = {extras = ["hf-transfer"], version = "^0.21.4"}
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
|
||||
Reference in New Issue
Block a user