#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from itertools import chain from pathlib import Path import numpy as np import pytest import torch from huggingface_hub import HfApi from PIL import Image from safetensors.torch import load_file import lerobot from lerobot.configs.default import DatasetConfig from lerobot.configs.train import TrainPipelineConfig from lerobot.datasets.factory import make_dataset from lerobot.datasets.image_writer import image_array_to_pil_image from lerobot.datasets.lerobot_dataset import ( LeRobotDataset, MultiLeRobotDataset, ) from lerobot.datasets.utils import ( DEFAULT_CHUNK_SIZE, DEFAULT_DATA_FILE_SIZE_IN_MB, DEFAULT_VIDEO_FILE_SIZE_IN_MB, create_branch, get_hf_features_from_features, hf_transform_to_torch, hw_to_dataset_features, ) from lerobot.envs.factory import make_env_config from lerobot.policies.factory import make_policy_config from lerobot.robots import make_robot_from_config from lerobot.utils.constants import ACTION, DONE, OBS_IMAGES, OBS_STATE, OBS_STR, REWARD from tests.fixtures.constants import DUMMY_CHW, DUMMY_HWC, DUMMY_REPO_ID from tests.mocks.mock_robot import MockRobotConfig from tests.utils import require_x86_64_kernel @pytest.fixture def image_dataset(tmp_path, empty_lerobot_dataset_factory): features = { "image": { "dtype": "image", "shape": DUMMY_CHW, "names": [ "channels", "height", "width", ], } } return empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) def test_same_attributes_defined(tmp_path, lerobot_dataset_factory): """ Instantiate a LeRobotDataset both ways with '__init__()' and 'create()' and verify that instantiated objects have the same sets of attributes defined. """ # Instantiate both ways robot = make_robot_from_config(MockRobotConfig()) action_features = hw_to_dataset_features(robot.action_features, ACTION, True) obs_features = hw_to_dataset_features(robot.observation_features, OBS_STR, True) dataset_features = {**action_features, **obs_features} root_create = tmp_path / "create" dataset_create = LeRobotDataset.create( repo_id=DUMMY_REPO_ID, fps=30, features=dataset_features, root=root_create ) root_init = tmp_path / "init" dataset_init = lerobot_dataset_factory(root=root_init, total_episodes=1, total_frames=1) init_attr = set(vars(dataset_init).keys()) create_attr = set(vars(dataset_create).keys()) assert init_attr == create_attr def test_dataset_initialization(tmp_path, lerobot_dataset_factory): kwargs = { "repo_id": DUMMY_REPO_ID, "total_episodes": 10, "total_frames": 400, "episodes": [2, 5, 6], } dataset = lerobot_dataset_factory(root=tmp_path / "test", **kwargs) assert dataset.repo_id == kwargs["repo_id"] assert dataset.meta.total_episodes == kwargs["total_episodes"] assert dataset.meta.total_frames == kwargs["total_frames"] assert dataset.episodes == kwargs["episodes"] assert dataset.num_episodes == len(kwargs["episodes"]) assert dataset.num_frames == len(dataset) # TODO(rcadene, aliberts): do not run LeRobotDataset.create, instead refactor LeRobotDatasetMetadata.create # and test the small resulting function that validates the features def test_dataset_feature_with_forward_slash_raises_error(): # make sure dir does not exist from lerobot.utils.constants import HF_LEROBOT_HOME dataset_dir = HF_LEROBOT_HOME / "lerobot/test/with/slash" # make sure does not exist if dataset_dir.exists(): dataset_dir.rmdir() with pytest.raises(ValueError): LeRobotDataset.create( repo_id="lerobot/test/with/slash", fps=30, features={"a/b": {"dtype": "float32", "shape": 2, "names": None}}, ) def test_add_frame_missing_task(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'task'}\n" ): dataset.add_frame({"state": torch.randn(1)}) def test_add_frame_missing_feature(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'state'}\n" ): dataset.add_frame({"task": "Dummy task"}) def test_add_frame_extra_feature(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="Feature mismatch in `frame` dictionary:\nExtra features: {'extra'}\n" ): dataset.add_frame({"state": torch.randn(1), "task": "Dummy task", "extra": "dummy_extra"}) def test_add_frame_wrong_type(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match="The feature 'state' of dtype 'float16' is not of the expected dtype 'float32'.\n" ): dataset.add_frame({"state": torch.randn(1, dtype=torch.float16), "task": "Dummy task"}) def test_add_frame_wrong_shape(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape("The feature 'state' of shape '(1,)' does not have the expected shape '(2,)'.\n"), ): dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"}) def test_add_frame_wrong_shape_python_float(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape( "The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '' provided instead.\n" ), ): dataset.add_frame({"state": 1.0, "task": "Dummy task"}) def test_add_frame_wrong_shape_torch_ndim_0(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape("The feature 'state' of shape '()' does not have the expected shape '(1,)'.\n"), ): dataset.add_frame({"state": torch.tensor(1.0), "task": "Dummy task"}) def test_add_frame_wrong_shape_numpy_ndim_0(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) with pytest.raises( ValueError, match=re.escape( "The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '' provided instead.\n" ), ): dataset.add_frame({"state": np.float32(1.0), "task": "Dummy task"}) def test_add_frame(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"}) dataset.save_episode() assert len(dataset) == 1 assert dataset[0]["task"] == "Dummy task" assert dataset[0]["task_index"] == 0 assert dataset[0]["state"].ndim == 0 def test_add_frame_state_1d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2]) def test_add_frame_state_2d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4]) def test_add_frame_state_3d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3]) def test_add_frame_state_4d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3, 5), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5]) def test_add_frame_state_5d(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5, 1), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": torch.randn(2, 4, 3, 5, 1), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5, 1]) def test_add_frame_state_numpy(tmp_path, empty_lerobot_dataset_factory): features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"state": np.array([1], dtype=np.float32), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["state"].ndim == 0 def test_add_frame_string(tmp_path, empty_lerobot_dataset_factory): features = {"caption": {"dtype": "string", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) dataset.add_frame({"caption": "Dummy caption", "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["caption"] == "Dummy caption" def test_add_frame_image_wrong_shape(image_dataset): dataset = image_dataset with pytest.raises( ValueError, match=re.escape( "The feature 'image' of shape '(3, 128, 96)' does not have the expected shape '(3, 96, 128)' or '(96, 128, 3)'.\n" ), ): c, h, w = DUMMY_CHW dataset.add_frame({"image": torch.randn(c, w, h), "task": "Dummy task"}) def test_add_frame_image_wrong_range(image_dataset): """This test will display the following error message from a thread: ``` Error writing image ...test_add_frame_image_wrong_ran0/test/images/image/episode_000000/frame_000000.png: The image data type is float, which requires values in the range [0.0, 1.0]. However, the provided range is [0.009678772038470007, 254.9776492089887]. Please adjust the range or provide a uint8 image with values in the range [0, 255] ``` Hence the image won't be saved on disk and save_episode will raise `FileNotFoundError`. """ dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_CHW) * 255, "task": "Dummy task"}) with pytest.raises(FileNotFoundError): dataset.save_episode() def test_add_frame_image(image_dataset): dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_CHW), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_h_w_c(image_dataset): dataset = image_dataset dataset.add_frame({"image": np.random.rand(*DUMMY_HWC), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_uint8(image_dataset): dataset = image_dataset image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8) dataset.add_frame({"image": image, "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_add_frame_image_pil(image_dataset): dataset = image_dataset image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8) dataset.add_frame({"image": Image.fromarray(image), "task": "Dummy task"}) dataset.save_episode() assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW) def test_image_array_to_pil_image_wrong_range_float_0_255(): image = np.random.rand(*DUMMY_HWC) * 255 with pytest.raises(ValueError): image_array_to_pil_image(image) # TODO(aliberts): # - [ ] test various attributes & state from init and create # - [ ] test init with episodes and check num_frames # - [ ] test add_episode # - [ ] test push_to_hub # - [ ] test smaller methods # TODO(rcadene): # - [ ] fix code so that old test_factory + backward pass # - [ ] write new unit tests to test save_episode + getitem # - [ ] save_episode : case where new dataset, concatenate same file, write new file (meta/episodes, data, videos) # - [ ] # - [ ] remove old tests @pytest.mark.parametrize( "env_name, repo_id, policy_name", # Single dataset lerobot.env_dataset_policy_triplets, # Multi-dataset # TODO after fix multidataset # + [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")], ) def test_factory(env_name, repo_id, policy_name): """ Tests that: - we can create a dataset with the factory. - for a commonly used set of data keys, the data dimensions are correct. """ cfg = TrainPipelineConfig( # TODO(rcadene, aliberts): remove dataset download dataset=DatasetConfig(repo_id=repo_id, episodes=[0]), env=make_env_config(env_name), policy=make_policy_config(policy_name), ) dataset = make_dataset(cfg) delta_timestamps = dataset.delta_timestamps camera_keys = dataset.meta.camera_keys item = dataset[0] keys_ndim_required = [ (ACTION, 1, True), ("episode_index", 0, True), ("frame_index", 0, True), ("timestamp", 0, True), # TODO(rcadene): should we rename it agent_pos? (OBS_STATE, 1, True), (REWARD, 0, False), (DONE, 0, False), ] # test number of dimensions for key, ndim, required in keys_ndim_required: if key not in item: if required: assert key in item, f"{key}" else: logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.') continue if delta_timestamps is not None and key in delta_timestamps: assert item[key].ndim == ndim + 1, f"{key}" assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}" else: assert item[key].ndim == ndim, f"{key}" if key in camera_keys: assert item[key].dtype == torch.float32, f"{key}" # TODO(rcadene): we assume for now that image normalization takes place in the model assert item[key].max() <= 1.0, f"{key}" assert item[key].min() >= 0.0, f"{key}" if delta_timestamps is not None and key in delta_timestamps: # test t,c,h,w assert item[key].shape[1] == 3, f"{key}" else: # test c,h,w assert item[key].shape[0] == 3, f"{key}" if delta_timestamps is not None: # test missing keys in delta_timestamps for key in delta_timestamps: assert key in item, f"{key}" # TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds. @pytest.mark.skip("TODO after fix multidataset") def test_multidataset_frames(): """Check that all dataset frames are incorporated.""" # Note: use the image variants of the dataset to make the test approx 3x faster. # Note: We really do need three repo_ids here as at some point this caught an issue with the chaining # logic that wouldn't be caught with two repo IDs. repo_ids = [ "lerobot/aloha_sim_insertion_human_image", "lerobot/aloha_sim_transfer_cube_human_image", "lerobot/aloha_sim_insertion_scripted_image", ] sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids] dataset = MultiLeRobotDataset(repo_ids) assert len(dataset) == sum(len(d) for d in sub_datasets) assert dataset.num_frames == sum(d.num_frames for d in sub_datasets) assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets) # Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and # check they match. expected_dataset_indices = [] for i, sub_dataset in enumerate(sub_datasets): expected_dataset_indices.extend([i] * len(sub_dataset)) for expected_dataset_index, sub_dataset_item, dataset_item in zip( expected_dataset_indices, chain(*sub_datasets), dataset, strict=True ): dataset_index = dataset_item.pop("dataset_index") assert dataset_index == expected_dataset_index assert sub_dataset_item.keys() == dataset_item.keys() for k in sub_dataset_item: assert torch.equal(sub_dataset_item[k], dataset_item[k]) @pytest.mark.parametrize( "repo_id", [ "lerobot/pusht", "lerobot/aloha_sim_insertion_human", "lerobot/xarm_lift_medium", # (michel-aractingi) commenting the two datasets from openx as test is failing # "lerobot/nyu_franka_play_dataset", # "lerobot/cmu_stretch", ], ) @require_x86_64_kernel def test_backward_compatibility(repo_id): """The artifacts for this test have been generated by `tests/artifacts/datasets/save_dataset_to_safetensors.py`.""" # TODO(rcadene, aliberts): remove dataset download dataset = LeRobotDataset(repo_id, episodes=[0]) test_dir = Path("tests/artifacts/datasets") / repo_id def load_and_compare(i): new_frame = dataset[i] # noqa: B023 old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023 # ignore language instructions (if exists) in language conditioned datasets # TODO (michel-aractingi): transform language obs to language embeddings via tokenizer new_frame.pop("language_instruction", None) old_frame.pop("language_instruction", None) new_frame.pop("task", None) old_frame.pop("task", None) # Remove task_index to allow for backward compatibility # TODO(rcadene): remove when new features have been generated if "task_index" not in old_frame: del new_frame["task_index"] new_keys = set(new_frame.keys()) old_keys = set(old_frame.keys()) assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same" for key in new_frame: assert torch.isclose(new_frame[key], old_frame[key]).all(), ( f"{key=} for index={i} does not contain the same value" ) # test2 first frames of first episode i = dataset.meta.episodes[0]["dataset_from_index"] load_and_compare(i) load_and_compare(i + 1) # test 2 frames at the middle of first episode i = int( (dataset.meta.episodes[0]["dataset_to_index"] - dataset.meta.episodes[0]["dataset_from_index"]) / 2 ) load_and_compare(i) load_and_compare(i + 1) # test 2 last frames of first episode i = dataset.meta.episodes[0]["dataset_to_index"] load_and_compare(i - 2) load_and_compare(i - 1) @pytest.mark.skip("Requires internet access") def test_create_branch(): api = HfApi() repo_id = "cadene/test_create_branch" repo_type = "dataset" branch = "test" ref = f"refs/heads/{branch}" # Prepare a repo with a test branch api.delete_repo(repo_id, repo_type=repo_type, missing_ok=True) api.create_repo(repo_id, repo_type=repo_type) create_branch(repo_id, repo_type=repo_type, branch=branch) # Make sure the test branch exists branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches refs = [branch.ref for branch in branches] assert ref in refs # Overwrite it create_branch(repo_id, repo_type=repo_type, branch=branch) # Clean api.delete_repo(repo_id, repo_type=repo_type) def test_check_cached_episodes_sufficient(tmp_path, lerobot_dataset_factory): """Test the _check_cached_episodes_sufficient method of LeRobotDataset.""" # Create a dataset with 5 episodes (0-4) dataset = lerobot_dataset_factory( root=tmp_path / "test", total_episodes=5, total_frames=200, use_videos=False, ) # Test hf_dataset is None dataset.hf_dataset = None assert dataset._check_cached_episodes_sufficient() is False # Test hf_dataset is empty import datasets empty_features = get_hf_features_from_features(dataset.features) dataset.hf_dataset = datasets.Dataset.from_dict( {key: [] for key in empty_features}, features=empty_features ) dataset.hf_dataset.set_transform(hf_transform_to_torch) assert dataset._check_cached_episodes_sufficient() is False # Restore the original dataset for remaining tests dataset.hf_dataset = dataset.load_hf_dataset() # Test all episodes requested (self.episodes = None) and all are available dataset.episodes = None assert dataset._check_cached_episodes_sufficient() is True # Test specific episodes requested that are all available dataset.episodes = [0, 2, 4] assert dataset._check_cached_episodes_sufficient() is True # Test request episodes that don't exist in the cached dataset # Create a dataset with only episodes 0, 1, 2 limited_dataset = lerobot_dataset_factory( root=tmp_path / "limited", total_episodes=3, total_frames=120, use_videos=False, ) # Request episodes that include non-existent ones limited_dataset.episodes = [0, 1, 2, 3, 4] assert limited_dataset._check_cached_episodes_sufficient() is False # Test create a dataset with sparse episodes (e.g., only episodes 0, 2, 4) # First create the full dataset structure sparse_dataset = lerobot_dataset_factory( root=tmp_path / "sparse", total_episodes=5, total_frames=200, use_videos=False, ) # Manually filter hf_dataset to only include episodes 0, 2, 4 episode_indices = sparse_dataset.hf_dataset["episode_index"] mask = torch.zeros(len(episode_indices), dtype=torch.bool) for ep in [0, 2, 4]: mask |= torch.tensor(episode_indices) == ep # Create a filtered dataset filtered_data = {} # Find image keys by checking features image_keys = [key for key, ft in sparse_dataset.features.items() if ft.get("dtype") == "image"] for key in sparse_dataset.hf_dataset.column_names: values = sparse_dataset.hf_dataset[key] # Filter values based on mask filtered_values = [val for i, val in enumerate(values) if mask[i]] # Convert float32 image tensors back to uint8 numpy arrays for HuggingFace dataset if key in image_keys and len(filtered_values) > 0: # Convert torch tensors (float32, [0, 1], CHW) back to numpy arrays (uint8, [0, 255], HWC) filtered_values = [ (val.permute(1, 2, 0).numpy() * 255).astype(np.uint8) for val in filtered_values ] filtered_data[key] = filtered_values sparse_dataset.hf_dataset = datasets.Dataset.from_dict( filtered_data, features=get_hf_features_from_features(sparse_dataset.features) ) sparse_dataset.hf_dataset.set_transform(hf_transform_to_torch) # Test requesting all episodes when only some are cached sparse_dataset.episodes = None assert sparse_dataset._check_cached_episodes_sufficient() is False # Test requesting only the available episodes sparse_dataset.episodes = [0, 2, 4] assert sparse_dataset._check_cached_episodes_sufficient() is True # Test requesting a mix of available and unavailable episodes sparse_dataset.episodes = [0, 1, 2] assert sparse_dataset._check_cached_episodes_sufficient() is False def test_update_chunk_settings(tmp_path, empty_lerobot_dataset_factory): """Test the update_chunk_settings functionality for both LeRobotDataset and LeRobotDatasetMetadata.""" features = { OBS_STATE: { "dtype": "float32", "shape": (6,), "names": ["shoulder_pan", "shoulder_lift", "elbow", "wrist_1", "wrist_2", "wrist_3"], }, ACTION: { "dtype": "float32", "shape": (6,), "names": ["shoulder_pan", "shoulder_lift", "elbow", "wrist_1", "wrist_2", "wrist_3"], }, } # Create dataset with default chunk settings dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features) # Test initial default values initial_settings = dataset.meta.get_chunk_settings() assert initial_settings["chunks_size"] == DEFAULT_CHUNK_SIZE assert initial_settings["data_files_size_in_mb"] == DEFAULT_DATA_FILE_SIZE_IN_MB assert initial_settings["video_files_size_in_mb"] == DEFAULT_VIDEO_FILE_SIZE_IN_MB # Test updating all settings at once new_chunks_size = 2000 new_data_size = 200 new_video_size = 1000 dataset.meta.update_chunk_settings( chunks_size=new_chunks_size, data_files_size_in_mb=new_data_size, video_files_size_in_mb=new_video_size, ) # Verify settings were updated updated_settings = dataset.meta.get_chunk_settings() assert updated_settings["chunks_size"] == new_chunks_size assert updated_settings["data_files_size_in_mb"] == new_data_size assert updated_settings["video_files_size_in_mb"] == new_video_size # Test updating individual settings dataset.meta.update_chunk_settings(chunks_size=1500) settings_after_partial = dataset.meta.get_chunk_settings() assert settings_after_partial["chunks_size"] == 1500 assert settings_after_partial["data_files_size_in_mb"] == new_data_size assert settings_after_partial["video_files_size_in_mb"] == new_video_size # Test updating only data file size dataset.meta.update_chunk_settings(data_files_size_in_mb=150) settings_after_data = dataset.meta.get_chunk_settings() assert settings_after_data["chunks_size"] == 1500 assert settings_after_data["data_files_size_in_mb"] == 150 assert settings_after_data["video_files_size_in_mb"] == new_video_size # Test updating only video file size dataset.meta.update_chunk_settings(video_files_size_in_mb=800) settings_after_video = dataset.meta.get_chunk_settings() assert settings_after_video["chunks_size"] == 1500 assert settings_after_video["data_files_size_in_mb"] == 150 assert settings_after_video["video_files_size_in_mb"] == 800 # Test that settings persist in the info file info_path = dataset.root / "meta" / "info.json" assert info_path.exists() # Verify the underlying metadata properties assert dataset.meta.chunks_size == 1500 assert dataset.meta.data_files_size_in_mb == 150 assert dataset.meta.video_files_size_in_mb == 800 # Test error handling for invalid values with pytest.raises(ValueError, match="chunks_size must be positive"): dataset.meta.update_chunk_settings(chunks_size=0) with pytest.raises(ValueError, match="chunks_size must be positive"): dataset.meta.update_chunk_settings(chunks_size=-100) with pytest.raises(ValueError, match="data_files_size_in_mb must be positive"): dataset.meta.update_chunk_settings(data_files_size_in_mb=0) with pytest.raises(ValueError, match="data_files_size_in_mb must be positive"): dataset.meta.update_chunk_settings(data_files_size_in_mb=-50) with pytest.raises(ValueError, match="video_files_size_in_mb must be positive"): dataset.meta.update_chunk_settings(video_files_size_in_mb=0) with pytest.raises(ValueError, match="video_files_size_in_mb must be positive"): dataset.meta.update_chunk_settings(video_files_size_in_mb=-200) # Test calling with None values (should not change anything) settings_before_none = dataset.meta.get_chunk_settings() dataset.meta.update_chunk_settings( chunks_size=None, data_files_size_in_mb=None, video_files_size_in_mb=None ) settings_after_none = dataset.meta.get_chunk_settings() assert settings_before_none == settings_after_none # Test metadata direct access meta_settings = dataset.meta.get_chunk_settings() assert meta_settings == dataset.meta.get_chunk_settings() # Test updating via metadata directly dataset.meta.update_chunk_settings(chunks_size=3000) assert dataset.meta.get_chunk_settings()["chunks_size"] == 3000 def test_update_chunk_settings_video_dataset(tmp_path): """Test update_chunk_settings with a video dataset to ensure video-specific logic works.""" features = { f"{OBS_IMAGES}.cam": { "dtype": "video", "shape": (480, 640, 3), "names": ["height", "width", "channels"], }, ACTION: {"dtype": "float32", "shape": (6,), "names": ["j1", "j2", "j3", "j4", "j5", "j6"]}, } # Create video dataset dataset = LeRobotDataset.create( repo_id=DUMMY_REPO_ID, fps=30, features=features, root=tmp_path / "video_test", use_videos=True ) # Test that video-specific settings work original_video_size = dataset.meta.get_chunk_settings()["video_files_size_in_mb"] new_video_size = original_video_size * 2 dataset.meta.update_chunk_settings(video_files_size_in_mb=new_video_size) assert dataset.meta.get_chunk_settings()["video_files_size_in_mb"] == new_video_size assert dataset.meta.video_files_size_in_mb == new_video_size def test_episode_index_distribution(tmp_path, empty_lerobot_dataset_factory): """Test that all frames have correct episode indices across multiple episodes.""" features = {"state": {"dtype": "float32", "shape": (2,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) # Create 3 episodes with different lengths num_episodes = 3 frames_per_episode = [10, 15, 8] for episode_idx in range(num_episodes): for _ in range(frames_per_episode[episode_idx]): dataset.add_frame({"state": torch.randn(2), "task": f"task_{episode_idx}"}) dataset.save_episode() dataset.finalize() # Load the dataset and check episode indices loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) # Check specific frames across episode boundaries cumulative = 0 for ep_idx, ep_length in enumerate(frames_per_episode): # Check start, middle, and end of each episode start_frame = cumulative middle_frame = cumulative + ep_length // 2 end_frame = cumulative + ep_length - 1 for frame_idx in [start_frame, middle_frame, end_frame]: frame_data = loaded_dataset[frame_idx] actual_ep_idx = frame_data["episode_index"].item() assert actual_ep_idx == ep_idx, ( f"Frame {frame_idx} has episode_index {actual_ep_idx}, should be {ep_idx}" ) cumulative += ep_length # Check episode index distribution all_episode_indices = [loaded_dataset[i]["episode_index"].item() for i in range(len(loaded_dataset))] from collections import Counter distribution = Counter(all_episode_indices) expected_dist = {i: frames_per_episode[i] for i in range(num_episodes)} assert dict(distribution) == expected_dist, ( f"Episode distribution {dict(distribution)} != expected {expected_dist}" ) def test_multi_episode_metadata_consistency(tmp_path, empty_lerobot_dataset_factory): """Test episode metadata consistency across multiple episodes.""" features = { "state": {"dtype": "float32", "shape": (3,), "names": ["x", "y", "z"]}, ACTION: {"dtype": "float32", "shape": (2,), "names": ["v", "w"]}, } dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) num_episodes = 4 frames_per_episode = [20, 35, 10, 25] tasks = ["pick", "place", "pick", "place"] for episode_idx in range(num_episodes): for _ in range(frames_per_episode[episode_idx]): dataset.add_frame({"state": torch.randn(3), ACTION: torch.randn(2), "task": tasks[episode_idx]}) dataset.save_episode() dataset.finalize() # Load and validate episode metadata loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) assert loaded_dataset.meta.total_episodes == num_episodes assert loaded_dataset.meta.total_frames == sum(frames_per_episode) cumulative_frames = 0 for episode_idx in range(num_episodes): episode_metadata = loaded_dataset.meta.episodes[episode_idx] # Check basic episode properties assert episode_metadata["episode_index"] == episode_idx assert episode_metadata["length"] == frames_per_episode[episode_idx] assert episode_metadata["tasks"] == [tasks[episode_idx]] # Check dataset indices expected_from = cumulative_frames expected_to = cumulative_frames + frames_per_episode[episode_idx] assert episode_metadata["dataset_from_index"] == expected_from assert episode_metadata["dataset_to_index"] == expected_to cumulative_frames += frames_per_episode[episode_idx] def test_data_consistency_across_episodes(tmp_path, empty_lerobot_dataset_factory): """Test that episodes have no gaps or overlaps in their data indices.""" features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) num_episodes = 5 frames_per_episode = [12, 8, 20, 15, 5] for episode_idx in range(num_episodes): for _ in range(frames_per_episode[episode_idx]): dataset.add_frame({"state": torch.randn(1), "task": "consistency_test"}) dataset.save_episode() dataset.finalize() loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) # Check data consistency - no gaps or overlaps cumulative_check = 0 for episode_idx in range(num_episodes): episode_metadata = loaded_dataset.meta.episodes[episode_idx] from_idx = episode_metadata["dataset_from_index"] to_idx = episode_metadata["dataset_to_index"] # Check that episode starts exactly where previous ended assert from_idx == cumulative_check, ( f"Episode {episode_idx} starts at {from_idx}, expected {cumulative_check}" ) # Check that episode length matches expected actual_length = to_idx - from_idx expected_length = frames_per_episode[episode_idx] assert actual_length == expected_length, ( f"Episode {episode_idx} length {actual_length} != expected {expected_length}" ) cumulative_check = to_idx # Final check: last episode should end at total frames expected_total_frames = sum(frames_per_episode) assert cumulative_check == expected_total_frames, ( f"Final frame count {cumulative_check} != expected {expected_total_frames}" ) def test_statistics_metadata_validation(tmp_path, empty_lerobot_dataset_factory): """Test that statistics are properly computed and stored for all features.""" features = { "state": {"dtype": "float32", "shape": (2,), "names": ["pos", "vel"]}, ACTION: {"dtype": "float32", "shape": (1,), "names": ["force"]}, } dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) # Create controlled data to verify statistics num_episodes = 2 frames_per_episode = [10, 10] # Use deterministic data for predictable statistics torch.manual_seed(42) for episode_idx in range(num_episodes): for frame_idx in range(frames_per_episode[episode_idx]): state_data = torch.tensor([frame_idx * 0.1, frame_idx * 0.2], dtype=torch.float32) action_data = torch.tensor([frame_idx * 0.05], dtype=torch.float32) dataset.add_frame({"state": state_data, ACTION: action_data, "task": "stats_test"}) dataset.save_episode() dataset.finalize() loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) # Check that statistics exist for all features assert loaded_dataset.meta.stats is not None, "No statistics found" for feature_name in features: assert feature_name in loaded_dataset.meta.stats, f"No statistics for feature '{feature_name}'" feature_stats = loaded_dataset.meta.stats[feature_name] expected_stats = ["min", "max", "mean", "std", "count"] for stat_key in expected_stats: assert stat_key in feature_stats, f"Missing '{stat_key}' statistic for '{feature_name}'" stat_value = feature_stats[stat_key] # Basic sanity checks if stat_key == "count": assert stat_value == sum(frames_per_episode), f"Wrong count for '{feature_name}'" elif stat_key in ["min", "max", "mean", "std"]: # Check that statistics are reasonable (not NaN, proper shapes) if hasattr(stat_value, "shape"): expected_shape = features[feature_name]["shape"] assert stat_value.shape == expected_shape or len(stat_value) == expected_shape[0], ( f"Wrong shape for {stat_key} of '{feature_name}'" ) # Check no NaN values if hasattr(stat_value, "__iter__"): assert not any(np.isnan(v) for v in stat_value), f"NaN in {stat_key} for '{feature_name}'" else: assert not np.isnan(stat_value), f"NaN in {stat_key} for '{feature_name}'" def test_episode_boundary_integrity(tmp_path, empty_lerobot_dataset_factory): """Test frame indices and episode transitions at episode boundaries.""" features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) num_episodes = 3 frames_per_episode = [7, 12, 5] for episode_idx in range(num_episodes): for frame_idx in range(frames_per_episode[episode_idx]): dataset.add_frame({"state": torch.tensor([float(frame_idx)]), "task": f"episode_{episode_idx}"}) dataset.save_episode() dataset.finalize() loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) # Test episode boundaries cumulative = 0 for ep_idx, ep_length in enumerate(frames_per_episode): if ep_idx > 0: # Check last frame of previous episode prev_frame = loaded_dataset[cumulative - 1] assert prev_frame["episode_index"].item() == ep_idx - 1 # Check first frame of current episode if cumulative < len(loaded_dataset): curr_frame = loaded_dataset[cumulative] assert curr_frame["episode_index"].item() == ep_idx # Check frame_index within episode for i in range(ep_length): if cumulative + i < len(loaded_dataset): frame = loaded_dataset[cumulative + i] assert frame["frame_index"].item() == i, f"Frame {cumulative + i} has wrong frame_index" assert frame["episode_index"].item() == ep_idx, ( f"Frame {cumulative + i} has wrong episode_index" ) cumulative += ep_length def test_task_indexing_and_validation(tmp_path, empty_lerobot_dataset_factory): """Test that tasks are properly indexed and retrievable.""" features = {"state": {"dtype": "float32", "shape": (1,), "names": None}} dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) # Use multiple tasks, including repeated ones tasks = ["pick", "place", "pick", "navigate", "place"] unique_tasks = list(set(tasks)) # ["pick", "place", "navigate"] frames_per_episode = [5, 8, 3, 10, 6] for episode_idx, task in enumerate(tasks): for _ in range(frames_per_episode[episode_idx]): dataset.add_frame({"state": torch.randn(1), "task": task}) dataset.save_episode() dataset.finalize() loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) # Check that all unique tasks are in the tasks metadata stored_tasks = set(loaded_dataset.meta.tasks.index) assert stored_tasks == set(unique_tasks), f"Stored tasks {stored_tasks} != expected {set(unique_tasks)}" # Check that task indices are consistent cumulative = 0 for episode_idx, expected_task in enumerate(tasks): episode_metadata = loaded_dataset.meta.episodes[episode_idx] assert episode_metadata["tasks"] == [expected_task] # Check frames in this episode have correct task for i in range(frames_per_episode[episode_idx]): frame = loaded_dataset[cumulative + i] assert frame["task"] == expected_task, f"Frame {cumulative + i} has wrong task" # Check task_index consistency expected_task_index = loaded_dataset.meta.get_task_index(expected_task) assert frame["task_index"].item() == expected_task_index cumulative += frames_per_episode[episode_idx] # Check total number of tasks assert loaded_dataset.meta.total_tasks == len(unique_tasks) def test_dataset_resume_recording(tmp_path, empty_lerobot_dataset_factory): """Test that resuming dataset recording preserves previously recorded episodes. This test validates the critical resume functionality by: 1. Recording initial episodes and finalizing 2. Reopening the dataset 3. Recording additional episodes 4. Verifying all data (old + new) is intact This specifically tests the bug fix where parquet files were being overwritten instead of appended to during resume. """ features = { "observation.state": {"dtype": "float32", "shape": (2,), "names": ["x", "y"]}, "action": {"dtype": "float32", "shape": (2,), "names": ["x", "y"]}, } dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) initial_episodes = 2 frames_per_episode = 3 for ep_idx in range(initial_episodes): for frame_idx in range(frames_per_episode): dataset.add_frame( { "observation.state": torch.tensor([float(ep_idx), float(frame_idx)]), "action": torch.tensor([0.5, 0.5]), "task": f"task_{ep_idx}", } ) dataset.save_episode() assert dataset.meta.total_episodes == initial_episodes assert dataset.meta.total_frames == initial_episodes * frames_per_episode dataset.finalize() initial_root = dataset.root initial_repo_id = dataset.repo_id del dataset dataset_verify = LeRobotDataset(initial_repo_id, root=initial_root, revision="v3.0") assert dataset_verify.meta.total_episodes == initial_episodes assert dataset_verify.meta.total_frames == initial_episodes * frames_per_episode assert len(dataset_verify.hf_dataset) == initial_episodes * frames_per_episode for idx in range(len(dataset_verify.hf_dataset)): item = dataset_verify[idx] expected_ep = idx // frames_per_episode expected_frame = idx % frames_per_episode assert item["episode_index"].item() == expected_ep assert item["frame_index"].item() == expected_frame assert item["index"].item() == idx assert item["observation.state"][0].item() == float(expected_ep) assert item["observation.state"][1].item() == float(expected_frame) del dataset_verify # Phase 3: Resume recording - add more episodes dataset_resumed = LeRobotDataset(initial_repo_id, root=initial_root, revision="v3.0") assert dataset_resumed.meta.total_episodes == initial_episodes assert dataset_resumed.meta.total_frames == initial_episodes * frames_per_episode assert dataset_resumed.latest_episode is None # Not recording yet assert dataset_resumed.writer is None assert dataset_resumed.meta.writer is None additional_episodes = 2 for ep_idx in range(initial_episodes, initial_episodes + additional_episodes): for frame_idx in range(frames_per_episode): dataset_resumed.add_frame( { "observation.state": torch.tensor([float(ep_idx), float(frame_idx)]), "action": torch.tensor([0.5, 0.5]), "task": f"task_{ep_idx}", } ) dataset_resumed.save_episode() total_episodes = initial_episodes + additional_episodes total_frames = total_episodes * frames_per_episode assert dataset_resumed.meta.total_episodes == total_episodes assert dataset_resumed.meta.total_frames == total_frames dataset_resumed.finalize() del dataset_resumed dataset_final = LeRobotDataset(initial_repo_id, root=initial_root, revision="v3.0") assert dataset_final.meta.total_episodes == total_episodes assert dataset_final.meta.total_frames == total_frames assert len(dataset_final.hf_dataset) == total_frames for idx in range(total_frames): item = dataset_final[idx] expected_ep = idx // frames_per_episode expected_frame = idx % frames_per_episode assert item["episode_index"].item() == expected_ep, ( f"Frame {idx}: wrong episode_index. Expected {expected_ep}, got {item['episode_index'].item()}" ) assert item["frame_index"].item() == expected_frame, ( f"Frame {idx}: wrong frame_index. Expected {expected_frame}, got {item['frame_index'].item()}" ) assert item["index"].item() == idx, ( f"Frame {idx}: wrong index. Expected {idx}, got {item['index'].item()}" ) # Verify data integrity assert item["observation.state"][0].item() == float(expected_ep), ( f"Frame {idx}: wrong observation.state[0]. Expected {float(expected_ep)}, " f"got {item['observation.state'][0].item()}" ) assert item["observation.state"][1].item() == float(expected_frame), ( f"Frame {idx}: wrong observation.state[1]. Expected {float(expected_frame)}, " f"got {item['observation.state'][1].item()}" ) assert len(dataset_final.meta.episodes) == total_episodes for ep_idx in range(total_episodes): ep_metadata = dataset_final.meta.episodes[ep_idx] assert ep_metadata["episode_index"] == ep_idx assert ep_metadata["length"] == frames_per_episode assert ep_metadata["tasks"] == [f"task_{ep_idx}"] expected_from = ep_idx * frames_per_episode expected_to = (ep_idx + 1) * frames_per_episode assert ep_metadata["dataset_from_index"] == expected_from assert ep_metadata["dataset_to_index"] == expected_to def test_frames_in_current_file_calculation(tmp_path, empty_lerobot_dataset_factory): """Regression test for bug where frames_in_current_file only counted frames from last episode instead of all frames in current file.""" features = { "observation.state": {"dtype": "float32", "shape": (2,), "names": ["x", "y"]}, "action": {"dtype": "float32", "shape": (2,), "names": ["vx", "vy"]}, } dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features, use_videos=False) dataset.meta.update_chunk_settings(data_files_size_in_mb=100) assert dataset._current_file_start_frame is None frames_per_episode = 10 for _ in range(frames_per_episode): dataset.add_frame( { "observation.state": torch.randn(2), "action": torch.randn(2), "task": "task_0", } ) dataset.save_episode() assert dataset._current_file_start_frame == 0 assert dataset.meta.total_episodes == 1 assert dataset.meta.total_frames == frames_per_episode for _ in range(frames_per_episode): dataset.add_frame( { "observation.state": torch.randn(2), "action": torch.randn(2), "task": "task_1", } ) dataset.save_episode() assert dataset._current_file_start_frame == 0 assert dataset.meta.total_episodes == 2 assert dataset.meta.total_frames == 2 * frames_per_episode ep1_chunk = dataset.latest_episode["data/chunk_index"] ep1_file = dataset.latest_episode["data/file_index"] assert ep1_chunk == 0 assert ep1_file == 0 for _ in range(frames_per_episode): dataset.add_frame( { "observation.state": torch.randn(2), "action": torch.randn(2), "task": "task_2", } ) dataset.save_episode() assert dataset._current_file_start_frame == 0 assert dataset.meta.total_episodes == 3 assert dataset.meta.total_frames == 3 * frames_per_episode ep2_chunk = dataset.latest_episode["data/chunk_index"] ep2_file = dataset.latest_episode["data/file_index"] assert ep2_chunk == 0 assert ep2_file == 0 dataset.finalize() from lerobot.datasets.utils import load_episodes dataset.meta.episodes = load_episodes(dataset.root) assert dataset.meta.episodes is not None for ep_idx in range(3): ep_metadata = dataset.meta.episodes[ep_idx] assert ep_metadata["data/chunk_index"] == 0 assert ep_metadata["data/file_index"] == 0 expected_from = ep_idx * frames_per_episode expected_to = (ep_idx + 1) * frames_per_episode assert ep_metadata["dataset_from_index"] == expected_from assert ep_metadata["dataset_to_index"] == expected_to loaded_dataset = LeRobotDataset(dataset.repo_id, root=dataset.root) assert len(loaded_dataset) == 3 * frames_per_episode assert loaded_dataset.meta.total_episodes == 3 assert loaded_dataset.meta.total_frames == 3 * frames_per_episode for idx in range(len(loaded_dataset)): frame = loaded_dataset[idx] expected_ep = idx // frames_per_episode assert frame["episode_index"].item() == expected_ep