Files
lerobot/tests/datasets/test_streaming.py
Francesco Capuano 33cad37054 Add Streaming Dataset (#1613)
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
2025-09-15 14:08:01 +02:00

392 lines
12 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
import torch
from lerobot.datasets.streaming_dataset import StreamingLeRobotDataset
from lerobot.datasets.utils import safe_shard
from tests.fixtures.constants import DUMMY_REPO_ID
def get_frames_expected_order(streaming_ds: StreamingLeRobotDataset) -> list[int]:
"""Replicates the shuffling logic of StreamingLeRobotDataset to get the expected order of indices."""
rng = np.random.default_rng(streaming_ds.seed)
buffer_size = streaming_ds.buffer_size
num_shards = streaming_ds.num_shards
shards_indices = []
for shard_idx in range(num_shards):
shard = streaming_ds.hf_dataset.shard(num_shards, index=shard_idx)
shard_indices = [item["index"] for item in shard]
shards_indices.append(shard_indices)
shard_iterators = {i: iter(s) for i, s in enumerate(shards_indices)}
buffer_indices_generator = streaming_ds._iter_random_indices(rng, buffer_size)
frames_buffer = []
expected_indices = []
while shard_iterators: # While there are still available shards
available_shard_keys = list(shard_iterators.keys())
if not available_shard_keys:
break
# Call _infinite_generator_over_elements with current available shards (key difference!)
shard_key = next(streaming_ds._infinite_generator_over_elements(rng, available_shard_keys))
try:
frame_index = next(shard_iterators[shard_key])
if len(frames_buffer) == buffer_size:
i = next(buffer_indices_generator)
expected_indices.append(frames_buffer[i])
frames_buffer[i] = frame_index
else:
frames_buffer.append(frame_index)
except StopIteration:
del shard_iterators[shard_key] # Remove exhausted shard
rng.shuffle(frames_buffer)
expected_indices.extend(frames_buffer)
return expected_indices
def test_single_frame_consistency(tmp_path, lerobot_dataset_factory):
"""Test if are correctly accessed"""
ds_num_frames = 400
ds_num_episodes = 10
buffer_size = 100
local_path = tmp_path / "test"
repo_id = f"{DUMMY_REPO_ID}"
ds = lerobot_dataset_factory(
root=local_path,
repo_id=repo_id,
total_episodes=ds_num_episodes,
total_frames=ds_num_frames,
)
streaming_ds = iter(StreamingLeRobotDataset(repo_id=repo_id, root=local_path, buffer_size=buffer_size))
key_checks = []
for _ in range(ds_num_frames):
streaming_frame = next(streaming_ds)
frame_idx = streaming_frame["index"]
target_frame = ds[frame_idx]
for key in streaming_frame:
left = streaming_frame[key]
right = target_frame[key]
if isinstance(left, str):
check = left == right
elif isinstance(left, torch.Tensor):
check = torch.allclose(left, right) and left.shape == right.shape
elif isinstance(left, float):
check = left == right.item() # right is a torch.Tensor
key_checks.append((key, check))
assert all(t[1] for t in key_checks), (
f"Checking {list(filter(lambda t: not t[1], key_checks))[0][0]} left and right were found different (frame_idx: {frame_idx})"
)
@pytest.mark.parametrize(
"shuffle",
[False, True],
)
def test_frames_order_over_epochs(tmp_path, lerobot_dataset_factory, shuffle):
"""Test if streamed frames correspond to shuffling operations over in-memory dataset."""
ds_num_frames = 400
ds_num_episodes = 10
buffer_size = 100
seed = 42
n_epochs = 3
local_path = tmp_path / "test"
repo_id = f"{DUMMY_REPO_ID}"
lerobot_dataset_factory(
root=local_path,
repo_id=repo_id,
total_episodes=ds_num_episodes,
total_frames=ds_num_frames,
)
streaming_ds = StreamingLeRobotDataset(
repo_id=repo_id, root=local_path, buffer_size=buffer_size, seed=seed, shuffle=shuffle
)
first_epoch_indices = [frame["index"] for frame in streaming_ds]
expected_indices = get_frames_expected_order(streaming_ds)
assert first_epoch_indices == expected_indices, "First epoch indices do not match expected indices"
expected_indices = get_frames_expected_order(streaming_ds)
for _ in range(n_epochs):
streaming_indices = [frame["index"] for frame in streaming_ds]
frames_match = all(
s_index == e_index for s_index, e_index in zip(streaming_indices, expected_indices, strict=True)
)
if shuffle:
assert not frames_match
else:
assert frames_match
@pytest.mark.parametrize(
"shuffle",
[False, True],
)
def test_frames_order_with_shards(tmp_path, lerobot_dataset_factory, shuffle):
"""Test if streamed frames correspond to shuffling operations over in-memory dataset with multiple shards."""
ds_num_frames = 100
ds_num_episodes = 10
buffer_size = 10
seed = 42
n_epochs = 3
data_file_size_mb = 0.001
chunks_size = 1
local_path = tmp_path / "test"
repo_id = f"{DUMMY_REPO_ID}-ciao"
lerobot_dataset_factory(
root=local_path,
repo_id=repo_id,
total_episodes=ds_num_episodes,
total_frames=ds_num_frames,
data_files_size_in_mb=data_file_size_mb,
chunks_size=chunks_size,
)
streaming_ds = StreamingLeRobotDataset(
repo_id=repo_id,
root=local_path,
buffer_size=buffer_size,
seed=seed,
shuffle=shuffle,
max_num_shards=4,
)
first_epoch_indices = [frame["index"] for frame in streaming_ds]
expected_indices = get_frames_expected_order(streaming_ds)
assert first_epoch_indices == expected_indices, "First epoch indices do not match expected indices"
for _ in range(n_epochs):
streaming_indices = [
frame["index"] for frame in streaming_ds
] # NOTE: this is the same as first_epoch_indices
frames_match = all(
s_index == e_index for s_index, e_index in zip(streaming_indices, expected_indices, strict=True)
)
if shuffle:
assert not frames_match
else:
assert frames_match
@pytest.mark.parametrize(
"state_deltas, action_deltas",
[
([-1, -0.5, -0.20, 0], [0, 1, 2, 3]),
([-1, -0.5, -0.20, 0], [-1.5, -1, -0.5, -0.20, -0.10, 0]),
([-2, -1, -0.5, 0], [0, 1, 2, 3]),
([-2, -1, -0.5, 0], [-1.5, -1, -0.5, -0.20, -0.10, 0]),
],
)
def test_frames_with_delta_consistency(tmp_path, lerobot_dataset_factory, state_deltas, action_deltas):
ds_num_frames = 500
ds_num_episodes = 10
buffer_size = 100
seed = 42
local_path = tmp_path / "test"
repo_id = f"{DUMMY_REPO_ID}-ciao"
camera_key = "phone"
delta_timestamps = {
camera_key: state_deltas,
"state": state_deltas,
"action": action_deltas,
}
ds = lerobot_dataset_factory(
root=local_path,
repo_id=repo_id,
total_episodes=ds_num_episodes,
total_frames=ds_num_frames,
delta_timestamps=delta_timestamps,
)
streaming_ds = iter(
StreamingLeRobotDataset(
repo_id=repo_id,
root=local_path,
buffer_size=buffer_size,
seed=seed,
shuffle=False,
delta_timestamps=delta_timestamps,
)
)
for i in range(ds_num_frames):
streaming_frame = next(streaming_ds)
frame_idx = streaming_frame["index"]
target_frame = ds[frame_idx]
assert set(streaming_frame.keys()) == set(target_frame.keys()), (
f"Keys differ between streaming frame and target one. Differ at: {set(streaming_frame.keys()) - set(target_frame.keys())}"
)
key_checks = []
for key in streaming_frame:
left = streaming_frame[key]
right = target_frame[key]
if isinstance(left, str):
check = left == right
elif isinstance(left, torch.Tensor):
if (
key not in ds.meta.camera_keys
and "is_pad" not in key
and f"{key}_is_pad" in streaming_frame
):
# comparing frames only on non-padded regions. Padding is applied to last-valid broadcasting
left = left[~streaming_frame[f"{key}_is_pad"]]
right = right[~target_frame[f"{key}_is_pad"]]
check = torch.allclose(left, right) and left.shape == right.shape
key_checks.append((key, check))
assert all(t[1] for t in key_checks), (
f"Checking {list(filter(lambda t: not t[1], key_checks))[0][0]} left and right were found different (i: {i}, frame_idx: {frame_idx})"
)
@pytest.mark.parametrize(
"state_deltas, action_deltas",
[
([-1, -0.5, -0.20, 0], [0, 1, 2, 3, 10, 20]),
([-1, -0.5, -0.20, 0], [-20, -1.5, -1, -0.5, -0.20, -0.10, 0]),
([-2, -1, -0.5, 0], [0, 1, 2, 3, 10, 20]),
([-2, -1, -0.5, 0], [-20, -1.5, -1, -0.5, -0.20, -0.10, 0]),
],
)
def test_frames_with_delta_consistency_with_shards(
tmp_path, lerobot_dataset_factory, state_deltas, action_deltas
):
ds_num_frames = 100
ds_num_episodes = 10
buffer_size = 10
data_file_size_mb = 0.001
chunks_size = 1
seed = 42
local_path = tmp_path / "test"
repo_id = f"{DUMMY_REPO_ID}-ciao"
camera_key = "phone"
delta_timestamps = {
camera_key: state_deltas,
"state": state_deltas,
"action": action_deltas,
}
ds = lerobot_dataset_factory(
root=local_path,
repo_id=repo_id,
total_episodes=ds_num_episodes,
total_frames=ds_num_frames,
delta_timestamps=delta_timestamps,
data_files_size_in_mb=data_file_size_mb,
chunks_size=chunks_size,
)
streaming_ds = StreamingLeRobotDataset(
repo_id=repo_id,
root=local_path,
buffer_size=buffer_size,
seed=seed,
shuffle=False,
delta_timestamps=delta_timestamps,
max_num_shards=4,
)
iter(streaming_ds)
num_shards = 4
shards_indices = []
for shard_idx in range(num_shards):
shard = safe_shard(streaming_ds.hf_dataset, shard_idx, num_shards)
shard_indices = [item["index"] for item in shard]
shards_indices.append(shard_indices)
streaming_ds = iter(streaming_ds)
for i in range(ds_num_frames):
streaming_frame = next(streaming_ds)
frame_idx = streaming_frame["index"]
target_frame = ds[frame_idx]
assert set(streaming_frame.keys()) == set(target_frame.keys()), (
f"Keys differ between streaming frame and target one. Differ at: {set(streaming_frame.keys()) - set(target_frame.keys())}"
)
key_checks = []
for key in streaming_frame:
left = streaming_frame[key]
right = target_frame[key]
if isinstance(left, str):
check = left == right
elif isinstance(left, torch.Tensor):
if (
key not in ds.meta.camera_keys
and "is_pad" not in key
and f"{key}_is_pad" in streaming_frame
):
# comparing frames only on non-padded regions. Padding is applied to last-valid broadcasting
left = left[~streaming_frame[f"{key}_is_pad"]]
right = right[~target_frame[f"{key}_is_pad"]]
check = torch.allclose(left, right) and left.shape == right.shape
elif isinstance(left, float):
check = left == right.item() # right is a torch.Tensor
key_checks.append((key, check))
assert all(t[1] for t in key_checks), (
f"Checking {list(filter(lambda t: not t[1], key_checks))[0][0]} left and right were found different (i: {i}, frame_idx: {frame_idx})"
)