Files
lerobot/tests/training/test_multi_gpu.py
Pepijn e82e7a02e9 feat(train): add accelerate for multi gpu training (#2154)
* Enhance training and logging functionality with accelerator support

- Added support for multi-GPU training by introducing an `accelerator` parameter in training functions.
- Updated `update_policy` to handle gradient updates based on the presence of an accelerator.
- Modified logging to prevent duplicate messages in non-main processes.
- Enhanced `set_seed` and `get_safe_torch_device` functions to accommodate accelerator usage.
- Updated `MetricsTracker` to account for the number of processes when calculating metrics.
- Introduced a new feature in `pyproject.toml` for the `accelerate` library dependency.

* Initialize logging in training script for both main and non-main processes

- Added `init_logging` calls to ensure proper logging setup when using the accelerator and in standard training mode.
- This change enhances the clarity and consistency of logging during training sessions.

* add docs and only push model once

* Place  logging under accelerate and update docs

* fix pre commit

* only log in main process

* main logging

* try with local rank

* add tests

* change runner

* fix test

* dont push to hub in multi gpu tests

* pre download dataset in tests

* small fixes

* fix path optimizer state

* update docs, and small improvements in train

* simplify accelerate main process detection

* small improvements in train

* fix OOM bug

* change accelerate detection

* add some debugging

* always use accelerate

* cleanup update method

* cleanup

* fix bug

* scale lr decay if we reduce steps

* cleanup logging

* fix formatting

* encorperate feedback pr

* add min memory to cpu tests

* use accelerate to determin logging

* fix precommit and fix tests

* chore: minor details

---------

Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-10-16 17:41:55 +02:00

212 lines
7.3 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Multi-GPU Training Tests
This module tests multi-GPU training functionality with accelerate.
These tests are designed to run on machines with 2+ GPUs and are executed
in the nightly CI workflow.
The tests automatically generate accelerate configs and launch training
with subprocess to properly test the distributed training environment.
"""
import os
import subprocess
import tempfile
from pathlib import Path
import pytest
import torch
from lerobot.datasets.lerobot_dataset import LeRobotDataset
def get_num_available_gpus():
"""Returns the number of available GPUs."""
if not torch.cuda.is_available():
return 0
return torch.cuda.device_count()
def download_dataset(repo_id, episodes):
"""
Pre-download dataset to avoid race conditions in multi-GPU training.
Args:
repo_id: HuggingFace dataset repository ID
episodes: List of episode indices to download
"""
# Simply instantiating the dataset will download it
_ = LeRobotDataset(repo_id, episodes=episodes)
print(f"Dataset {repo_id} downloaded successfully")
def run_accelerate_training(config_args, num_processes=4, temp_dir=None):
"""
Helper function to run training with accelerate launch.
Args:
config_args: List of config arguments to pass to lerobot_train.py
num_processes: Number of processes (GPUs) to use
temp_dir: Temporary directory for outputs
Returns:
subprocess.CompletedProcess result
"""
config_path = Path(temp_dir) / "accelerate_config.yaml"
# Write YAML config
with open(config_path, "w") as f:
f.write("compute_environment: LOCAL_MACHINE\n")
f.write("distributed_type: MULTI_GPU\n")
f.write("mixed_precision: 'no'\n")
f.write(f"num_processes: {num_processes}\n")
f.write("use_cpu: false\n")
f.write("gpu_ids: all\n")
f.write("downcast_bf16: 'no'\n")
f.write("machine_rank: 0\n")
f.write("main_training_function: main\n")
f.write("num_machines: 1\n")
f.write("rdzv_backend: static\n")
f.write("same_network: true\n")
cmd = [
"accelerate",
"launch",
"--config_file",
str(config_path),
"-m",
"lerobot.scripts.lerobot_train",
] + config_args
result = subprocess.run(
cmd,
capture_output=True,
text=True,
env={**os.environ, "CUDA_VISIBLE_DEVICES": ",".join(map(str, range(num_processes)))},
)
return result
@pytest.mark.skipif(
get_num_available_gpus() < 2,
reason="Multi-GPU tests require at least 2 GPUs",
)
class TestMultiGPUTraining:
"""Test suite for multi-GPU training functionality."""
def test_basic_multi_gpu_training(self):
"""
Test that basic multi-GPU training runs successfully.
Verifies that the training completes without errors.
"""
# Pre-download dataset to avoid race conditions
download_dataset("lerobot/pusht", episodes=[0])
with tempfile.TemporaryDirectory() as temp_dir:
output_dir = Path(temp_dir) / "outputs"
config_args = [
"--dataset.repo_id=lerobot/pusht",
"--dataset.episodes=[0]",
"--policy.type=act",
"--policy.device=cuda",
"--policy.push_to_hub=false",
f"--output_dir={output_dir}",
"--batch_size=4",
"--steps=10",
"--eval_freq=-1",
"--log_freq=5",
"--save_freq=10",
"--seed=42",
"--num_workers=0",
]
result = run_accelerate_training(config_args, num_processes=4, temp_dir=temp_dir)
# Check that training completed successfully
assert result.returncode == 0, (
f"Multi-GPU training failed with return code {result.returncode}\n"
f"STDOUT:\n{result.stdout}\n"
f"STDERR:\n{result.stderr}"
)
# Verify checkpoint was saved
checkpoints_dir = output_dir / "checkpoints"
assert checkpoints_dir.exists(), "Checkpoints directory was not created"
# Verify that training completed
assert "End of training" in result.stdout or "End of training" in result.stderr
def test_checkpoint_saving_multi_gpu(self):
"""
Test that checkpoints are correctly saved during multi-GPU training.
Only the main process (rank 0) should save checkpoints.
"""
# Pre-download dataset to avoid race conditions
download_dataset("lerobot/pusht", episodes=[0])
with tempfile.TemporaryDirectory() as temp_dir:
output_dir = Path(temp_dir) / "outputs"
config_args = [
"--dataset.repo_id=lerobot/pusht",
"--dataset.episodes=[0]",
"--policy.type=act",
"--policy.device=cuda",
"--policy.push_to_hub=false",
f"--output_dir={output_dir}",
"--batch_size=4",
"--steps=20",
"--eval_freq=-1",
"--log_freq=5",
"--save_freq=10",
"--seed=42",
"--num_workers=0",
]
result = run_accelerate_training(config_args, num_processes=2, temp_dir=temp_dir)
assert result.returncode == 0, (
f"Training failed:\nSTDOUT:\n{result.stdout}\n\nSTDERR:\n{result.stderr}"
)
# Verify checkpoint directory exists
checkpoints_dir = output_dir / "checkpoints"
assert checkpoints_dir.exists(), "Checkpoints directory not created"
# Count checkpoint directories (should have checkpoint at step 10 and 20)
checkpoint_dirs = [d for d in checkpoints_dir.iterdir() if d.is_dir()]
assert len(checkpoint_dirs) >= 1, f"Expected at least 1 checkpoint, found {len(checkpoint_dirs)}"
# Verify checkpoint contents
for checkpoint_dir in checkpoint_dirs:
# Check for model files
model_files = list(checkpoint_dir.rglob("*.safetensors"))
assert len(model_files) > 0, f"No model files in checkpoint {checkpoint_dir}"
# Check for training state
training_state_dir = checkpoint_dir / "training_state"
assert training_state_dir.exists(), f"No training state in checkpoint {checkpoint_dir}"
# Verify optimizer state exists
optimizer_state = training_state_dir / "optimizer_state.safetensors"
assert optimizer_state.exists(), f"No optimizer state in checkpoint {checkpoint_dir}"