Files
lerobot/docs/source/smolvla.mdx
Steven Palma 378e1f0338 Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore

* chore: update pre-commit

* chore(deps): update pyproject

* fix(ci): multiple fixes

* chore: pre-commit apply

* chore: address review comments

* Update pyproject.toml

Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>

* chore(deps): add todo

---------

Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
2025-07-17 14:30:20 +02:00

117 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Finetune SmolVLA
SmolVLA is Hugging Faces lightweight foundation model for robotics. Designed for easy fine-tuning on LeRobot datasets, it helps accelerate your development!
<p align="center">
<img
src="https://cdn-uploads.huggingface.co/production/uploads/640e21ef3c82bd463ee5a76d/aooU0a3DMtYmy_1IWMaIM.png"
alt="SmolVLA architecture."
width="500"
/>
<br />
<em>
Figure 1. SmolVLA takes as input (i) multiple cameras views, (ii) the
robots current sensorimotor state, and (iii) a natural language
instruction, encoded into contextual features used to condition the action
expert when generating an action chunk.
</em>
</p>
## Set Up Your Environment
1. Install LeRobot by following our [Installation Guide](./installation).
2. Install SmolVLA dependencies by running:
```bash
pip install -e ".[smolvla]"
```
## Collect a dataset
SmolVLA is a base model, so fine-tuning on your own data is required for optimal performance in your setup.
We recommend recording ~50 episodes of your task as a starting point. Follow our guide to get started: [Recording a Dataset](https://huggingface.co/docs/lerobot/getting_started_real_world_robot#record-a-dataset)
<Tip>
In your dataset, make sure to have enough demonstrations per each variation (e.g. the cube position on the table if it is cube pick-place task) you are introducing.
We recommend checking out the dataset linked below for reference that was used in the [SmolVLA paper](https://huggingface.co/papers/2506.01844):
🔗 [SVLA SO100 PickPlace](https://huggingface.co/spaces/lerobot/visualize_dataset?path=%2Flerobot%2Fsvla_so100_pickplace%2Fepisode_0)
In this dataset, we recorded 50 episodes across 5 distinct cube positions. For each position, we collected 10 episodes of pick-and-place interactions. This structure, repeating each variation several times, helped the model generalize better. We tried similar dataset with 25 episodes, and it was not enough leading to a bad performance. So, the data quality and quantity is definitely a key.
After you have your dataset available on the Hub, you are good to go to use our finetuning script to adapt SmolVLA to your application.
</Tip>
## Finetune SmolVLA on your data
Use [`smolvla_base`](https://hf.co/lerobot/smolvla_base), our pretrained 450M model, and fine-tune it on your data.
Training the model for 20k steps will roughly take ~4 hrs on a single A100 GPU. You should tune the number of steps based on performance and your use-case.
If you don't have a gpu device, you can train using our notebook on [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/lerobot/training-smolvla.ipynb)
Pass your dataset to the training script using `--dataset.repo_id`. If you want to test your installation, run the following command where we use one of the datasets we collected for the [SmolVLA Paper](https://huggingface.co/papers/2506.01844).
```bash
cd lerobot && python -m lerobot.scripts.train \
--policy.path=lerobot/smolvla_base \
--dataset.repo_id=${HF_USER}/mydataset \
--batch_size=64 \
--steps=20000 \
--output_dir=outputs/train/my_smolvla \
--job_name=my_smolvla_training \
--policy.device=cuda \
--wandb.enable=true
```
<Tip>
You can start with a small batch size and increase it incrementally, if the
GPU allows it, as long as loading times remain short.
</Tip>
Fine-tuning is an art. For a complete overview of the options for finetuning, run
```bash
python -m lerobot.scripts.train --help
```
<p align="center">
<img
src="https://cdn-uploads.huggingface.co/production/uploads/640e21ef3c82bd463ee5a76d/S-3vvVCulChREwHDkquoc.gif"
alt="Comparison of SmolVLA across task variations."
width="500"
/>
<br />
<em>
Figure 2: Comparison of SmolVLA across task variations. From left to right:
(1) pick-place cube counting, (2) pick-place cube counting, (3) pick-place
cube counting under perturbations, and (4) generalization on pick-and-place
of the lego block with real-world SO101.
</em>
</p>
## Evaluate the finetuned model and run it in real-time
Similarly for when recording an episode, it is recommended that you are logged in to the HuggingFace Hub. You can follow the corresponding steps: [Record a dataset](./getting_started_real_world_robot#record-a-dataset).
Once you are logged in, you can run inference in your setup by doing:
```bash
python -m lerobot.record \
--robot.type=so101_follower \
--robot.port=/dev/ttyACM0 \ # <- Use your port
--robot.id=my_blue_follower_arm \ # <- Use your robot id
--robot.cameras="{ front: {type: opencv, index_or_path: 8, width: 640, height: 480, fps: 30}}" \ # <- Use your cameras
--dataset.single_task="Grasp a lego block and put it in the bin." \ # <- Use the same task description you used in your dataset recording
--dataset.repo_id=${HF_USER}/eval_DATASET_NAME_test \ # <- This will be the dataset name on HF Hub
--dataset.episode_time_s=50 \
--dataset.num_episodes=10 \
# <- Teleop optional if you want to teleoperate in between episodes \
# --teleop.type=so100_leader \
# --teleop.port=/dev/ttyACM0 \
# --teleop.id=my_red_leader_arm \
--policy.path=HF_USER/FINETUNE_MODEL_NAME # <- Use your fine-tuned model
```
Depending on your evaluation setup, you can configure the duration and the number of episodes to record for your evaluation suite.