Files
lerobot/lerobot/common/datasets/aloha.py

64 lines
1.9 KiB
Python

import torch
from datasets import load_dataset
from lerobot.common.datasets.utils import load_previous_and_future_frames
class AlohaDataset(torch.utils.data.Dataset):
"""
https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human
https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted
"""
available_datasets = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
fps = 50
image_keys = ["observation.images.top"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.0",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.transform = transform
self.delta_timestamps = delta_timestamps
self.data_dict = load_dataset(f"lerobot/{self.dataset_id}", revision=self.version, split="train")
self.data_dict = self.data_dict.with_format("torch")
@property
def num_samples(self) -> int:
return len(self.data_dict)
@property
def num_episodes(self) -> int:
return len(self.data_dict.unique("episode_id"))
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = self.data_dict[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(
item,
self.data_dict,
self.delta_timestamps,
)
if self.transform is not None:
item = self.transform(item)
return item