Files
lerobot/tests/datasets/test_compute_stats.py
Pepijn abde7be3b3 Add OpenPi, Pi0 and Pi0.5 (#1910)
* initial commit

* change device in test

* do detailed import

* adhere to python 3.11 syntax

* fix autodocstring

* additionally

* do same in other files

* add model. prefix to all keys in state dict

* use dummy stats

* add pi05

* also shorten action_steps

* fix test

* all test pass! and fix tokenizer max length between 05 and 0

* remove test

* fix transformer dependency

* fix test

* split pi0 and pi05 policy in seperate files

* fix test

* fix push to hub test

* add some comments, license and readme

* remove warning in config

* add pi05 to factory

* remove check

* rename action_horizon to chunk_size

* clean up padding of state and action (more in line with lerobot pi0)

* add openpi image transforms for training and add more flexibility to _preprocess_images similar to lerobot pi0

* fix key match from pytorch state dict (similar keys to openpi implementation now)

* also for pi05

* update to python 3.11

* revert to openpi transformer replace python 3.11

* fix(modeling pi0): nit  warning message

* use safeauto_docstring

* fix: remove unused param

* fix from pretrained

* add preprocess tests

* also compile forward method

* Do not add model prefix to normalization

* use same name for action and state dim as lerobot pi0 and remove fixed image keys

* load from pretrained_path

* temp: hardcode base model

* fix override self.pretrained_path = None overwrite

* rename to loss

* remove additional image augmentations, lerobot dataset already does this

* Add docs

* put tests in test folder

* Add test to instatiate all base models

* go back to python 3.10

* update docs

* adapt docs pi05

* change docs: finetune base model options

* minor docs fixes and dependencies

* remove todo

* cast float64 to float32 for mps

* skip if no transformers

* fix tests

* add new models to modelcard

* add back init

* fix circular input

* feat: only run pi test on GPU

* remove require_nightly_gpu

* replace decorator test_pi0_openpi

* rename action_dim, state_dim to max_action_dim, max_state_dim

* fix doc and constants

* cleanup tests

* fix from pretrained

* fix tests

* add comment pi0 pi05 tests, add image features to pi0 pi05 hub tests

* fix, state is included in language not in flow head

* Move test to specific folder

* and paligemma task with newline

* remove add_special_tokens, not needed

* feedback pr

* Remove previous pi0 and rename pi0_openpi and pi05_openpi

* Add Quantile stats to LeRobotDataset (#1985)

* - Add RunningQuantileStats class for efficient histogram-based quantile computation
- Integrate quantile parameters (compute_quantiles, quantiles) into LeRobotDataset
- Support quantile computation during episode collection and aggregation
- Add comprehensive function-based test suite (24 tests) for quantile functionality
- Maintain full backward compatibility with existing stats computation
- Enable configurable quantiles (default: [0.01, 0.99]) for robust normalization

* style fixes, make quantiles computation by default to new datasets

* fix tests

* - Added DEFAULT_QUANTILES=[0.01, 0.10, 0.50, 0.90, 0.99] to be computed for each features instead of being chosen by the user
- Fortified tests.

* - add helper functions to reshape stats
- add missing test for quantiles

* - Add QUANTILE normalization mode to normalize the data with the 1st and 99th percentiles.
- Add QUANTILE10 normalization mode to normalize the data with the 10th and 90th percentiles.

* style fixes

* Added missing lisence

* Simplify compute_stats

* - added script `augment_dataset_quantile_stats.py` so that we can add quantile stats to existing v3 datasets that dont have quatniles
- modified quantile computation instead of using the edge for the value, interpolate the values in the bin

* rename pi0/pi05 files

* Remove open pi patch and use custom transformer branch for now

* renaming

* fix

* Revert "fix"

This reverts commit 1ea65730ac2cbca6e5869df734fbd4392561b3c6.

* fix naming

* feet(pi0/pi0.5): add pipeline (#2009)

* feat(processor): convert openpi model with processor

* TODO: Make test works

* fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests

- Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`.
- Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`.
- Enhanced task handling in tests to ensure proper formatting and batch size consistency.
- Cleaned up commented-out test code for clarity.

* refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy

- Updated imports and references throughout the codebase to reflect the new naming convention.
- Introduced a new processor file for PI0 to handle pre-processing and post-processing steps.
- Adjusted tests to utilize the renamed classes, ensuring consistency and functionality.
- Enhanced clarity and maintainability by removing outdated naming conventions.

* refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration

- Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions.
- Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`.
- Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter.
- Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability.
- Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility.

* feat(processor): convert openpi model with processor

* TODO: Make test works

* fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests

- Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`.
- Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`.
- Enhanced task handling in tests to ensure proper formatting and batch size consistency.
- Cleaned up commented-out test code for clarity.

* refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy

- Updated imports and references throughout the codebase to reflect the new naming convention.
- Introduced a new processor file for PI0 to handle pre-processing and post-processing steps.
- Adjusted tests to utilize the renamed classes, ensuring consistency and functionality.
- Enhanced clarity and maintainability by removing outdated naming conventions.

* refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration

- Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions.
- Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`.
- Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter.
- Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability.
- Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility.

* refactor(pi05): update imports and rename configuration classes

- Changed imports to reflect the new naming convention for PI05 configuration and policy classes.
- Renamed `PI05OpenPIConfig` to `PI05Config` and `PI05OpenPIPolicy` to `PI05Policy` for consistency.
- Introduced a new processor file for PI05, implementing pre-processing and post-processing steps.
- Updated tests to utilize the renamed classes, ensuring functionality and consistency across the codebase.

* update(pi05): increase tokenizer_max_length for improved processing

- Changed the `tokenizer_max_length` from 48 to 200 to enhance the model's capability in handling longer sequences.
- This adjustment aims to improve the overall performance and flexibility of the PI05 configuration.

* add default for state (max_state_dim)

* correct naming

* fix import

* cleanup code

* remove unused test

* us quantiles for action

* move to device

* remove discrete state assert

* fix pi05 test

* move pi05 to device

* use base models in comparison tests

* small renames for tests

* change number of tokens pi05 test

* fix openpi tokenization in test

* fix hub test

* fix test

* assert lerobot vs openpi tests

---------

Co-authored-by: Pepijn <pepijn@huggingface.co>

* add headers

* add back previously removed imports

* update if statement load processor with dataset stats

* remove to avoid circular import

* inject dataset stats for pretrained models

* check normalization before applying

* add link to  quantile augument script

* fix(policies): transformers import for ci in PI0 & PI05 (#2039)

* fix(policies): transformers import for ci in PI0

* fix(policies): transformers import for ci in PI05

* test(processor): fix expected raise when normalization types are missing (#2040)

* switch normalization order pipeline for pi05

* Fix/quantiles script (#2064)

* refactor augment stats with quantiles script
add parallelization for faster processing
shift the quantile normalization between -1 1

* fix replay buffer tests

* fix comment

* overwrite the pipeline normalization features with the policy features

* remove double normalization overwrite

* cleanup from pretrained

* remove typo

* also set norm_map

* fix(augment_quantiles) images incorrectly divided by 255

* clamp quantiles

* link to lerobot base models

* rename tests

* encorperate PR feedback

* update docstring for RunningQuantileStats

* update doc links

* Revert "clamp quantiles"

This reverts commit 172207471c8f2cb62958e9a9e6a0535ba3ff67d4.

* fix self.paligemma

* fix tests related to quantiles that were scaled to [0,1], the new range is [-1, 1]

* fix libero doc and use different transformer branch

* use fix branch instead of feat

* update results libero

* add new line

* fix formatting

* precommit

* update results libero

* update libero doc

* update title

* final changes

* add quantiles to test

* run pre commit

---------

Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-10-02 13:14:45 +02:00

835 lines
28 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import numpy as np
import pytest
from lerobot.datasets.compute_stats import (
RunningQuantileStats,
_assert_type_and_shape,
aggregate_feature_stats,
aggregate_stats,
compute_episode_stats,
estimate_num_samples,
get_feature_stats,
sample_images,
sample_indices,
)
from lerobot.utils.constants import OBS_IMAGE, OBS_STATE
def mock_load_image_as_numpy(path, dtype, channel_first):
return np.ones((3, 32, 32), dtype=dtype) if channel_first else np.ones((32, 32, 3), dtype=dtype)
@pytest.fixture
def sample_array():
return np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def test_estimate_num_samples():
assert estimate_num_samples(1) == 1
assert estimate_num_samples(10) == 10
assert estimate_num_samples(100) == 100
assert estimate_num_samples(200) == 100
assert estimate_num_samples(1000) == 177
assert estimate_num_samples(2000) == 299
assert estimate_num_samples(5000) == 594
assert estimate_num_samples(10_000) == 1000
assert estimate_num_samples(20_000) == 1681
assert estimate_num_samples(50_000) == 3343
assert estimate_num_samples(500_000) == 10_000
def test_sample_indices():
indices = sample_indices(10)
assert len(indices) > 0
assert indices[0] == 0
assert indices[-1] == 9
assert len(indices) == estimate_num_samples(10)
@patch("lerobot.datasets.compute_stats.load_image_as_numpy", side_effect=mock_load_image_as_numpy)
def test_sample_images(mock_load):
image_paths = [f"image_{i}.jpg" for i in range(100)]
images = sample_images(image_paths)
assert isinstance(images, np.ndarray)
assert images.shape[1:] == (3, 32, 32)
assert images.dtype == np.uint8
assert len(images) == estimate_num_samples(100)
def test_get_feature_stats_images():
data = np.random.rand(100, 3, 32, 32)
stats = get_feature_stats(data, axis=(0, 2, 3), keepdims=True)
assert "min" in stats and "max" in stats and "mean" in stats and "std" in stats and "count" in stats
np.testing.assert_equal(stats["count"], np.array([100]))
assert stats["min"].shape == stats["max"].shape == stats["mean"].shape == stats["std"].shape
def test_get_feature_stats_axis_0_keepdims(sample_array):
expected = {
"min": np.array([[1, 2, 3]]),
"max": np.array([[7, 8, 9]]),
"mean": np.array([[4.0, 5.0, 6.0]]),
"std": np.array([[2.44948974, 2.44948974, 2.44948974]]),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=(0,), keepdims=True)
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_axis_1(sample_array):
expected = {
"min": np.array([1, 4, 7]),
"max": np.array([3, 6, 9]),
"mean": np.array([2.0, 5.0, 8.0]),
"std": np.array([0.81649658, 0.81649658, 0.81649658]),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=(1,), keepdims=False)
# Check that basic stats are correct (quantiles are also included now)
assert set(expected.keys()).issubset(set(result.keys()))
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_no_axis(sample_array):
expected = {
"min": np.array(1),
"max": np.array(9),
"mean": np.array(5.0),
"std": np.array(2.5819889),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=None, keepdims=False)
# Check that basic stats are correct (quantiles are also included now)
assert set(expected.keys()).issubset(set(result.keys()))
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_empty_array():
array = np.array([])
with pytest.raises(ValueError):
get_feature_stats(array, axis=(0,), keepdims=True)
def test_get_feature_stats_single_value():
array = np.array([[1337]])
result = get_feature_stats(array, axis=None, keepdims=True)
np.testing.assert_equal(result["min"], np.array(1337))
np.testing.assert_equal(result["max"], np.array(1337))
np.testing.assert_equal(result["mean"], np.array(1337.0))
np.testing.assert_equal(result["std"], np.array(0.0))
np.testing.assert_equal(result["count"], np.array([1]))
def test_compute_episode_stats():
episode_data = {
OBS_IMAGE: [f"image_{i}.jpg" for i in range(100)],
OBS_STATE: np.random.rand(100, 10),
}
features = {
OBS_IMAGE: {"dtype": "image"},
OBS_STATE: {"dtype": "numeric"},
}
with patch("lerobot.datasets.compute_stats.load_image_as_numpy", side_effect=mock_load_image_as_numpy):
stats = compute_episode_stats(episode_data, features)
assert OBS_IMAGE in stats and OBS_STATE in stats
assert stats[OBS_IMAGE]["count"].item() == 100
assert stats[OBS_STATE]["count"].item() == 100
assert stats[OBS_IMAGE]["mean"].shape == (3, 1, 1)
def test_assert_type_and_shape_valid():
valid_stats = [
{
"feature1": {
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
}
}
]
_assert_type_and_shape(valid_stats)
def test_assert_type_and_shape_invalid_type():
invalid_stats = [
{
"feature1": {
"min": [1.0], # Not a numpy array
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
}
}
]
with pytest.raises(ValueError, match="Stats must be composed of numpy array"):
_assert_type_and_shape(invalid_stats)
def test_assert_type_and_shape_invalid_shape():
invalid_stats = [
{
"feature1": {
"count": np.array([1, 2]), # Wrong shape
}
}
]
with pytest.raises(ValueError, match=r"Shape of 'count' must be \(1\)"):
_assert_type_and_shape(invalid_stats)
def test_aggregate_feature_stats():
stats_ft_list = [
{
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
},
{
"min": np.array([2.0]),
"max": np.array([12.0]),
"mean": np.array([6.0]),
"std": np.array([2.5]),
"count": np.array([1]),
},
]
result = aggregate_feature_stats(stats_ft_list)
np.testing.assert_allclose(result["min"], np.array([1.0]))
np.testing.assert_allclose(result["max"], np.array([12.0]))
np.testing.assert_allclose(result["mean"], np.array([5.5]))
np.testing.assert_allclose(result["std"], np.array([2.318405]), atol=1e-6)
np.testing.assert_allclose(result["count"], np.array([2]))
def test_aggregate_stats():
all_stats = [
{
OBS_IMAGE: {
"min": [1, 2, 3],
"max": [10, 20, 30],
"mean": [5.5, 10.5, 15.5],
"std": [2.87, 5.87, 8.87],
"count": 10,
},
OBS_STATE: {"min": 1, "max": 10, "mean": 5.5, "std": 2.87, "count": 10},
"extra_key_0": {"min": 5, "max": 25, "mean": 15, "std": 6, "count": 6},
},
{
OBS_IMAGE: {
"min": [2, 1, 0],
"max": [15, 10, 5],
"mean": [8.5, 5.5, 2.5],
"std": [3.42, 2.42, 1.42],
"count": 15,
},
OBS_STATE: {"min": 2, "max": 15, "mean": 8.5, "std": 3.42, "count": 15},
"extra_key_1": {"min": 0, "max": 20, "mean": 10, "std": 5, "count": 5},
},
]
expected_agg_stats = {
OBS_IMAGE: {
"min": [1, 1, 0],
"max": [15, 20, 30],
"mean": [7.3, 7.5, 7.7],
"std": [3.5317, 4.8267, 8.5581],
"count": 25,
},
OBS_STATE: {
"min": 1,
"max": 15,
"mean": 7.3,
"std": 3.5317,
"count": 25,
},
"extra_key_0": {
"min": 5,
"max": 25,
"mean": 15.0,
"std": 6.0,
"count": 6,
},
"extra_key_1": {
"min": 0,
"max": 20,
"mean": 10.0,
"std": 5.0,
"count": 5,
},
}
# cast to numpy
for ep_stats in all_stats:
for fkey, stats in ep_stats.items():
for k in stats:
stats[k] = np.array(stats[k], dtype=np.int64 if k == "count" else np.float32)
if fkey == OBS_IMAGE and k != "count":
stats[k] = stats[k].reshape(3, 1, 1) # for normalization on image channels
else:
stats[k] = stats[k].reshape(1)
# cast to numpy
for fkey, stats in expected_agg_stats.items():
for k in stats:
stats[k] = np.array(stats[k], dtype=np.int64 if k == "count" else np.float32)
if fkey == OBS_IMAGE and k != "count":
stats[k] = stats[k].reshape(3, 1, 1) # for normalization on image channels
else:
stats[k] = stats[k].reshape(1)
results = aggregate_stats(all_stats)
for fkey in expected_agg_stats:
np.testing.assert_allclose(results[fkey]["min"], expected_agg_stats[fkey]["min"])
np.testing.assert_allclose(results[fkey]["max"], expected_agg_stats[fkey]["max"])
np.testing.assert_allclose(results[fkey]["mean"], expected_agg_stats[fkey]["mean"])
np.testing.assert_allclose(
results[fkey]["std"], expected_agg_stats[fkey]["std"], atol=1e-04, rtol=1e-04
)
np.testing.assert_allclose(results[fkey]["count"], expected_agg_stats[fkey]["count"])
def test_running_quantile_stats_initialization():
"""Test proper initialization of RunningQuantileStats."""
running_stats = RunningQuantileStats()
assert running_stats._count == 0
assert running_stats._mean is None
assert running_stats._num_quantile_bins == 5000
# Test custom bin size
running_stats_custom = RunningQuantileStats(num_quantile_bins=1000)
assert running_stats_custom._num_quantile_bins == 1000
def test_running_quantile_stats_single_batch_update():
"""Test updating with a single batch."""
np.random.seed(42)
data = np.random.normal(0, 1, (100, 3))
running_stats = RunningQuantileStats()
running_stats.update(data)
assert running_stats._count == 100
assert running_stats._mean.shape == (3,)
assert len(running_stats._histograms) == 3
assert len(running_stats._bin_edges) == 3
# Verify basic statistics are reasonable
np.testing.assert_allclose(running_stats._mean, np.mean(data, axis=0), atol=1e-10)
def test_running_quantile_stats_multiple_batch_updates():
"""Test updating with multiple batches."""
np.random.seed(42)
data1 = np.random.normal(0, 1, (100, 2))
data2 = np.random.normal(1, 1, (150, 2))
running_stats = RunningQuantileStats()
running_stats.update(data1)
running_stats.update(data2)
assert running_stats._count == 250
# Verify running mean is correct
combined_data = np.vstack([data1, data2])
expected_mean = np.mean(combined_data, axis=0)
np.testing.assert_allclose(running_stats._mean, expected_mean, atol=1e-10)
def test_running_quantile_stats_get_statistics_basic():
"""Test getting basic statistics without quantiles."""
np.random.seed(42)
data = np.random.normal(0, 1, (100, 2))
running_stats = RunningQuantileStats()
running_stats.update(data)
stats = running_stats.get_statistics()
# Should have basic stats
expected_keys = {"min", "max", "mean", "std", "count"}
assert expected_keys.issubset(set(stats.keys()))
# Verify values
np.testing.assert_allclose(stats["mean"], np.mean(data, axis=0), atol=1e-10)
np.testing.assert_allclose(stats["std"], np.std(data, axis=0), atol=1e-6)
np.testing.assert_equal(stats["count"], np.array([100]))
def test_running_quantile_stats_get_statistics_with_quantiles():
"""Test getting statistics with quantiles."""
np.random.seed(42)
data = np.random.normal(0, 1, (1000, 2))
running_stats = RunningQuantileStats()
running_stats.update(data)
stats = running_stats.get_statistics()
# Should have basic stats plus quantiles
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert expected_keys.issubset(set(stats.keys()))
# Verify quantile values are reasonable
from lerobot.datasets.compute_stats import DEFAULT_QUANTILES
for i, q in enumerate(DEFAULT_QUANTILES):
q_key = f"q{int(q * 100):02d}"
assert q_key in stats
assert stats[q_key].shape == (2,)
# Check that quantiles are in reasonable order
if i > 0:
prev_q_key = f"q{int(DEFAULT_QUANTILES[i - 1] * 100):02d}"
assert np.all(stats[prev_q_key] <= stats[q_key])
def test_running_quantile_stats_histogram_adjustment():
"""Test that histograms adjust when min/max change."""
running_stats = RunningQuantileStats()
# Initial data with small range
data1 = np.array([[0.0, 1.0], [0.1, 1.1], [0.2, 1.2]])
running_stats.update(data1)
initial_edges_0 = running_stats._bin_edges[0].copy()
initial_edges_1 = running_stats._bin_edges[1].copy()
# Add data with much larger range
data2 = np.array([[10.0, -10.0], [11.0, -11.0]])
running_stats.update(data2)
# Bin edges should have changed
assert not np.array_equal(initial_edges_0, running_stats._bin_edges[0])
assert not np.array_equal(initial_edges_1, running_stats._bin_edges[1])
# New edges should cover the expanded range
# First dimension: min should still be ~0.0, max should be ~11.0
assert running_stats._bin_edges[0][0] <= 0.0
assert running_stats._bin_edges[0][-1] >= 11.0
# Second dimension: min should be ~-11.0, max should be ~1.2
assert running_stats._bin_edges[1][0] <= -11.0
assert running_stats._bin_edges[1][-1] >= 1.2
def test_running_quantile_stats_insufficient_data_error():
"""Test error when trying to get stats with insufficient data."""
running_stats = RunningQuantileStats()
with pytest.raises(ValueError, match="Cannot compute statistics for less than 2 vectors"):
running_stats.get_statistics()
# Single vector should also fail
running_stats.update(np.array([[1.0]]))
with pytest.raises(ValueError, match="Cannot compute statistics for less than 2 vectors"):
running_stats.get_statistics()
def test_running_quantile_stats_vector_length_consistency():
"""Test error when vector lengths don't match."""
running_stats = RunningQuantileStats()
running_stats.update(np.array([[1.0, 2.0], [3.0, 4.0]]))
with pytest.raises(ValueError, match="The length of new vectors does not match"):
running_stats.update(np.array([[1.0, 2.0, 3.0]])) # Different length
def test_running_quantile_stats_reshape_handling():
"""Test that various input shapes are handled correctly."""
running_stats = RunningQuantileStats()
# Test 3D input (e.g., images)
data_3d = np.random.normal(0, 1, (10, 32, 32))
running_stats.update(data_3d)
assert running_stats._count == 10 * 32
assert running_stats._mean.shape == (32,)
# Test 1D input
running_stats_1d = RunningQuantileStats()
data_1d = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)
running_stats_1d.update(data_1d)
assert running_stats_1d._count == 5
assert running_stats_1d._mean.shape == (1,)
def test_get_feature_stats_quantiles_enabled_by_default():
"""Test that quantiles are computed by default."""
data = np.random.normal(0, 1, (100, 5))
stats = get_feature_stats(data, axis=0, keepdims=False)
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert set(stats.keys()) == expected_keys
def test_get_feature_stats_quantiles_with_vector_data():
"""Test quantile computation with vector data."""
np.random.seed(42)
data = np.random.normal(0, 1, (100, 5))
stats = get_feature_stats(data, axis=0, keepdims=False)
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert set(stats.keys()) == expected_keys
# Verify shapes
assert stats["q01"].shape == (5,)
assert stats["q99"].shape == (5,)
# Verify quantiles are reasonable
assert np.all(stats["q01"] < stats["q99"])
def test_get_feature_stats_quantiles_with_image_data():
"""Test quantile computation with image data."""
np.random.seed(42)
data = np.random.normal(0, 1, (50, 3, 32, 32)) # batch, channels, height, width
stats = get_feature_stats(data, axis=(0, 2, 3), keepdims=True)
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert set(stats.keys()) == expected_keys
# Verify shapes for images (should be (1, channels, 1, 1))
assert stats["q01"].shape == (1, 3, 1, 1)
assert stats["q50"].shape == (1, 3, 1, 1)
assert stats["q99"].shape == (1, 3, 1, 1)
def test_get_feature_stats_fixed_quantiles():
"""Test that fixed quantiles are always computed."""
data = np.random.normal(0, 1, (200, 3))
stats = get_feature_stats(data, axis=0, keepdims=False)
expected_quantile_keys = {"q01", "q10", "q50", "q90", "q99"}
assert expected_quantile_keys.issubset(set(stats.keys()))
def test_get_feature_stats_unsupported_axis_error():
"""Test error for unsupported axis configuration."""
data = np.random.normal(0, 1, (10, 5))
with pytest.raises(ValueError, match="Unsupported axis configuration"):
get_feature_stats(
data,
axis=(1, 2), # Unsupported axis
keepdims=False,
)
def test_compute_episode_stats_backward_compatibility():
"""Test that existing functionality is preserved."""
episode_data = {
"action": np.random.normal(0, 1, (100, 7)),
"observation.state": np.random.normal(0, 1, (100, 10)),
}
features = {
"action": {"dtype": "float32", "shape": (7,)},
"observation.state": {"dtype": "float32", "shape": (10,)},
}
stats = compute_episode_stats(episode_data, features)
for key in ["action", "observation.state"]:
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert set(stats[key].keys()) == expected_keys
def test_compute_episode_stats_with_custom_quantiles():
"""Test quantile computation with custom quantile values."""
np.random.seed(42)
episode_data = {
"action": np.random.normal(0, 1, (100, 7)),
"observation.state": np.random.normal(2, 1, (100, 10)),
}
features = {
"action": {"dtype": "float32", "shape": (7,)},
"observation.state": {"dtype": "float32", "shape": (10,)},
}
stats = compute_episode_stats(episode_data, features)
# Should have quantiles
for key in ["action", "observation.state"]:
expected_keys = {"min", "max", "mean", "std", "count", "q01", "q10", "q50", "q90", "q99"}
assert set(stats[key].keys()) == expected_keys
# Verify shapes
assert stats[key]["q01"].shape == (features[key]["shape"][0],)
assert stats[key]["q99"].shape == (features[key]["shape"][0],)
def test_compute_episode_stats_with_image_data():
"""Test quantile computation with image features."""
image_paths = [f"image_{i}.jpg" for i in range(50)]
episode_data = {
"observation.image": image_paths,
"action": np.random.normal(0, 1, (50, 5)),
}
features = {
"observation.image": {"dtype": "image"},
"action": {"dtype": "float32", "shape": (5,)},
}
with patch("lerobot.datasets.compute_stats.load_image_as_numpy", side_effect=mock_load_image_as_numpy):
stats = compute_episode_stats(episode_data, features)
# Image quantiles should be normalized and have correct shape
assert "q01" in stats["observation.image"]
assert "q50" in stats["observation.image"]
assert "q99" in stats["observation.image"]
assert stats["observation.image"]["q01"].shape == (3, 1, 1)
assert stats["observation.image"]["q50"].shape == (3, 1, 1)
assert stats["observation.image"]["q99"].shape == (3, 1, 1)
# Action quantiles should have correct shape
assert stats["action"]["q01"].shape == (5,)
assert stats["action"]["q50"].shape == (5,)
assert stats["action"]["q99"].shape == (5,)
def test_compute_episode_stats_string_features_skipped():
"""Test that string features are properly skipped."""
episode_data = {
"task": ["pick_apple"] * 100, # String feature
"action": np.random.normal(0, 1, (100, 5)),
}
features = {
"task": {"dtype": "string"},
"action": {"dtype": "float32", "shape": (5,)},
}
stats = compute_episode_stats(
episode_data,
features,
)
# String features should be skipped
assert "task" not in stats
assert "action" in stats
assert "q01" in stats["action"]
def test_aggregate_feature_stats_with_quantiles():
"""Test aggregating feature stats that include quantiles."""
stats_ft_list = [
{
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([100]),
"q01": np.array([1.5]),
"q99": np.array([9.5]),
},
{
"min": np.array([2.0]),
"max": np.array([12.0]),
"mean": np.array([6.0]),
"std": np.array([2.5]),
"count": np.array([150]),
"q01": np.array([2.5]),
"q99": np.array([11.5]),
},
]
result = aggregate_feature_stats(stats_ft_list)
# Should preserve quantiles
assert "q01" in result
assert "q99" in result
# Verify quantile aggregation (weighted average)
expected_q01 = (1.5 * 100 + 2.5 * 150) / 250 # ≈ 2.1
expected_q99 = (9.5 * 100 + 11.5 * 150) / 250 # ≈ 10.7
np.testing.assert_allclose(result["q01"], np.array([expected_q01]), atol=1e-6)
np.testing.assert_allclose(result["q99"], np.array([expected_q99]), atol=1e-6)
def test_aggregate_stats_mixed_quantiles():
"""Test aggregating stats where some have quantiles and some don't."""
stats_with_quantiles = {
"feature1": {
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([100]),
"q01": np.array([1.5]),
"q99": np.array([9.5]),
}
}
stats_without_quantiles = {
"feature2": {
"min": np.array([0.0]),
"max": np.array([5.0]),
"mean": np.array([2.5]),
"std": np.array([1.5]),
"count": np.array([50]),
}
}
all_stats = [stats_with_quantiles, stats_without_quantiles]
result = aggregate_stats(all_stats)
# Feature1 should keep its quantiles
assert "q01" in result["feature1"]
assert "q99" in result["feature1"]
# Feature2 should not have quantiles
assert "q01" not in result["feature2"]
assert "q99" not in result["feature2"]
def test_assert_type_and_shape_with_quantiles():
"""Test validation works correctly with quantile keys."""
# Valid stats with quantiles
valid_stats = [
{
"observation.image": {
"min": np.array([0.0, 0.0, 0.0]).reshape(3, 1, 1),
"max": np.array([1.0, 1.0, 1.0]).reshape(3, 1, 1),
"mean": np.array([0.5, 0.5, 0.5]).reshape(3, 1, 1),
"std": np.array([0.2, 0.2, 0.2]).reshape(3, 1, 1),
"count": np.array([100]),
"q01": np.array([0.1, 0.1, 0.1]).reshape(3, 1, 1),
"q99": np.array([0.9, 0.9, 0.9]).reshape(3, 1, 1),
}
}
]
# Should not raise error
_assert_type_and_shape(valid_stats)
# Invalid shape for quantile
invalid_stats = [
{
"observation.image": {
"count": np.array([100]),
"q01": np.array([0.1, 0.2]), # Wrong shape for image quantile
}
}
]
with pytest.raises(ValueError, match="Shape of quantile 'q01' must be \\(3,1,1\\)"):
_assert_type_and_shape(invalid_stats)
def test_quantile_integration_single_value_quantiles():
"""Test quantile computation with single repeated value."""
data = np.ones((100, 3)) # All ones
running_stats = RunningQuantileStats()
running_stats.update(data)
stats = running_stats.get_statistics()
# All quantiles should be approximately 1.0
np.testing.assert_allclose(stats["q01"], np.array([1.0, 1.0, 1.0]), atol=1e-6)
np.testing.assert_allclose(stats["q50"], np.array([1.0, 1.0, 1.0]), atol=1e-6)
np.testing.assert_allclose(stats["q99"], np.array([1.0, 1.0, 1.0]), atol=1e-6)
def test_quantile_integration_fixed_quantiles():
"""Test that fixed quantiles are computed."""
np.random.seed(42)
data = np.random.normal(0, 1, (1000, 2))
stats = get_feature_stats(data, axis=0, keepdims=False)
# Check all fixed quantiles are present
assert "q01" in stats
assert "q10" in stats
assert "q50" in stats
assert "q90" in stats
assert "q99" in stats
def test_quantile_integration_large_dataset_quantiles():
"""Test quantile computation efficiency with large datasets."""
np.random.seed(42)
large_data = np.random.normal(0, 1, (10000, 5))
running_stats = RunningQuantileStats(num_quantile_bins=1000) # Reduced bins for speed
running_stats.update(large_data)
stats = running_stats.get_statistics()
# Should complete without issues and produce reasonable results
assert stats["count"][0] == 10000
assert len(stats["q01"]) == 5
def test_fixed_quantiles_always_computed():
"""Test that the fixed quantiles [0.01, 0.10, 0.50, 0.90, 0.99] are always computed."""
np.random.seed(42)
# Test with vector data
vector_data = np.random.normal(0, 1, (100, 5))
vector_stats = get_feature_stats(vector_data, axis=0, keepdims=False)
# Check all fixed quantiles are present
expected_quantiles = ["q01", "q10", "q50", "q90", "q99"]
for q_key in expected_quantiles:
assert q_key in vector_stats
assert vector_stats[q_key].shape == (5,)
# Test with image data
image_data = np.random.randint(0, 256, (50, 3, 32, 32), dtype=np.uint8)
image_stats = get_feature_stats(image_data, axis=(0, 2, 3), keepdims=True)
# Check all fixed quantiles are present for images
for q_key in expected_quantiles:
assert q_key in image_stats
assert image_stats[q_key].shape == (1, 3, 1, 1)
# Test with episode data
episode_data = {
"action": np.random.normal(0, 1, (100, 7)),
"observation.state": np.random.normal(0, 1, (100, 10)),
}
features = {
"action": {"dtype": "float32", "shape": (7,)},
"observation.state": {"dtype": "float32", "shape": (10,)},
}
episode_stats = compute_episode_stats(episode_data, features)
# Check all fixed quantiles are present in episode stats
for key in ["action", "observation.state"]:
for q_key in expected_quantiles:
assert q_key in episode_stats[key]
assert episode_stats[key][q_key].shape == (features[key]["shape"][0],)