Files
lerobot/tests/datasets/test_dataset_tools.py
Michel Aractingi f2ff370459 Incremental parquet writing (#1903)
* incremental parquet writing

* add .finalise() and a backup __del__ for stopping writers

* fix missing import

* precommit fixes added back the use of embed images

* added lazy loading for hf_Dataset to avoid frequently reloading the dataset during recording

* fix bug in video timestamps

* Added proper closing of parquet file before reading

* Added rigorous testing to validate the consistency of the meta data after creation of a new dataset

* fix bug in episode index during clear_episode_buffer

* fix(empty concat): check for empty paths list before data files concatenation

* fix(v3.0 message): updating v3.0 backward compatibility message.

* added fixes for the resume logic

* answering co-pilot review

* reverting some changes and style nits

* removed unused functions

* fix chunk_id and file_id when resuming

* - fix parquet loading when resuming
- add test to verify the parquet file integrity when resuming so that data files are now overwritten

* added general function get_file_size_in_mb and removed the one for video

* fix table size value when resuming

* Remove unnecessary reloading of the parquet file when resuming record.
Write to a new parquet file when resuming record

* added back reading parquet file for image datasets only

* - respond to Qlhoest comments
- Use pyarrows `from_pydict` function
- Add buffer for episode metadata to write to the parquet file in batches to improve efficiency
- Remove the  use of `to_parquet_with_hf_images`

* fix(dataset_tools) with the new logic using proper finalize
bug in finding the latest path of the metdata that was pointing to the data files
added check for the metadata size in the case the metadatabuffer was not written yet

* nit in flush_metadata_buffer

* fix(lerobot_dataset) return the right dataset len when a subset of the dataset is requested

---------

Co-authored-by: Harsimrat Sandhawalia <hs.sandhawalia@gmail.com>
2025-10-11 11:01:30 +02:00

896 lines
31 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for dataset tools utilities."""
from unittest.mock import patch
import numpy as np
import pytest
import torch
from lerobot.datasets.dataset_tools import (
add_feature,
delete_episodes,
merge_datasets,
remove_feature,
split_dataset,
)
@pytest.fixture
def sample_dataset(tmp_path, empty_lerobot_dataset_factory):
"""Create a sample dataset for testing."""
features = {
"action": {"dtype": "float32", "shape": (6,), "names": None},
"observation.state": {"dtype": "float32", "shape": (4,), "names": None},
"observation.images.top": {"dtype": "image", "shape": (224, 224, 3), "names": None},
}
dataset = empty_lerobot_dataset_factory(
root=tmp_path / "test_dataset",
features=features,
)
for ep_idx in range(5):
for _ in range(10):
frame = {
"action": np.random.randn(6).astype(np.float32),
"observation.state": np.random.randn(4).astype(np.float32),
"observation.images.top": np.random.randint(0, 255, size=(224, 224, 3), dtype=np.uint8),
"task": f"task_{ep_idx % 2}",
}
dataset.add_frame(frame)
dataset.save_episode()
dataset.finalize()
return dataset
def test_delete_single_episode(sample_dataset, tmp_path):
"""Test deleting a single episode."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[2],
output_dir=output_dir,
)
assert new_dataset.meta.total_episodes == 4
assert new_dataset.meta.total_frames == 40
episode_indices = {int(idx.item()) for idx in new_dataset.hf_dataset["episode_index"]}
assert episode_indices == {0, 1, 2, 3}
assert len(new_dataset) == 40
def test_delete_multiple_episodes(sample_dataset, tmp_path):
"""Test deleting multiple episodes."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[1, 3],
output_dir=output_dir,
)
assert new_dataset.meta.total_episodes == 3
assert new_dataset.meta.total_frames == 30
episode_indices = {int(idx.item()) for idx in new_dataset.hf_dataset["episode_index"]}
assert episode_indices == {0, 1, 2}
def test_delete_invalid_episodes(sample_dataset, tmp_path):
"""Test error handling for invalid episode indices."""
with pytest.raises(ValueError, match="Invalid episode indices"):
delete_episodes(
sample_dataset,
episode_indices=[10, 20],
output_dir=tmp_path / "filtered",
)
def test_delete_all_episodes(sample_dataset, tmp_path):
"""Test error when trying to delete all episodes."""
with pytest.raises(ValueError, match="Cannot delete all episodes"):
delete_episodes(
sample_dataset,
episode_indices=list(range(5)),
output_dir=tmp_path / "filtered",
)
def test_delete_empty_list(sample_dataset, tmp_path):
"""Test error when no episodes specified."""
with pytest.raises(ValueError, match="No episodes to delete"):
delete_episodes(
sample_dataset,
episode_indices=[],
output_dir=tmp_path / "filtered",
)
def test_split_by_episodes(sample_dataset, tmp_path):
"""Test splitting dataset by specific episode indices."""
splits = {
"train": [0, 1, 2],
"val": [3, 4],
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
def mock_snapshot(repo_id, **kwargs):
if "train" in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_train")
elif "val" in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_val")
return str(kwargs.get("local_dir", tmp_path))
mock_snapshot_download.side_effect = mock_snapshot
result = split_dataset(
sample_dataset,
splits=splits,
output_dir=tmp_path,
)
assert set(result.keys()) == {"train", "val"}
assert result["train"].meta.total_episodes == 3
assert result["train"].meta.total_frames == 30
assert result["val"].meta.total_episodes == 2
assert result["val"].meta.total_frames == 20
train_episodes = {int(idx.item()) for idx in result["train"].hf_dataset["episode_index"]}
assert train_episodes == {0, 1, 2}
val_episodes = {int(idx.item()) for idx in result["val"].hf_dataset["episode_index"]}
assert val_episodes == {0, 1}
def test_split_by_fractions(sample_dataset, tmp_path):
"""Test splitting dataset by fractions."""
splits = {
"train": 0.6,
"val": 0.4,
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
def mock_snapshot(repo_id, **kwargs):
for split_name in splits:
if split_name in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_{split_name}")
return str(kwargs.get("local_dir", tmp_path))
mock_snapshot_download.side_effect = mock_snapshot
result = split_dataset(
sample_dataset,
splits=splits,
output_dir=tmp_path,
)
assert result["train"].meta.total_episodes == 3
assert result["val"].meta.total_episodes == 2
def test_split_overlapping_episodes(sample_dataset, tmp_path):
"""Test error when episodes appear in multiple splits."""
splits = {
"train": [0, 1, 2],
"val": [2, 3, 4],
}
with pytest.raises(ValueError, match="Episodes cannot appear in multiple splits"):
split_dataset(sample_dataset, splits=splits, output_dir=tmp_path)
def test_split_invalid_fractions(sample_dataset, tmp_path):
"""Test error when fractions sum to more than 1."""
splits = {
"train": 0.7,
"val": 0.5,
}
with pytest.raises(ValueError, match="Split fractions must sum to <= 1.0"):
split_dataset(sample_dataset, splits=splits, output_dir=tmp_path)
def test_split_empty(sample_dataset, tmp_path):
"""Test error with empty splits."""
with pytest.raises(ValueError, match="No splits provided"):
split_dataset(sample_dataset, splits={}, output_dir=tmp_path)
def test_merge_two_datasets(sample_dataset, tmp_path, empty_lerobot_dataset_factory):
"""Test merging two datasets."""
features = {
"action": {"dtype": "float32", "shape": (6,), "names": None},
"observation.state": {"dtype": "float32", "shape": (4,), "names": None},
"observation.images.top": {"dtype": "image", "shape": (224, 224, 3), "names": None},
}
dataset2 = empty_lerobot_dataset_factory(
root=tmp_path / "test_dataset2",
features=features,
)
for ep_idx in range(3):
for _ in range(10):
frame = {
"action": np.random.randn(6).astype(np.float32),
"observation.state": np.random.randn(4).astype(np.float32),
"observation.images.top": np.random.randint(0, 255, size=(224, 224, 3), dtype=np.uint8),
"task": f"task_{ep_idx % 2}",
}
dataset2.add_frame(frame)
dataset2.save_episode()
dataset2.finalize()
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "merged_dataset")
merged = merge_datasets(
[sample_dataset, dataset2],
output_repo_id="merged_dataset",
output_dir=tmp_path / "merged_dataset",
)
assert merged.meta.total_episodes == 8 # 5 + 3
assert merged.meta.total_frames == 80 # 50 + 30
episode_indices = sorted({int(idx.item()) for idx in merged.hf_dataset["episode_index"]})
assert episode_indices == list(range(8))
def test_merge_empty_list(tmp_path):
"""Test error when merging empty list."""
with pytest.raises(ValueError, match="No datasets to merge"):
merge_datasets([], output_repo_id="merged", output_dir=tmp_path)
def test_add_feature_with_values(sample_dataset, tmp_path):
"""Test adding a feature with pre-computed values."""
num_frames = sample_dataset.meta.total_frames
reward_values = np.random.randn(num_frames, 1).astype(np.float32)
feature_info = {
"dtype": "float32",
"shape": (1,),
"names": None,
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "with_reward")
new_dataset = add_feature(
sample_dataset,
feature_name="reward",
feature_values=reward_values,
feature_info=feature_info,
output_dir=tmp_path / "with_reward",
)
assert "reward" in new_dataset.meta.features
assert new_dataset.meta.features["reward"] == feature_info
assert len(new_dataset) == num_frames
sample_item = new_dataset[0]
assert "reward" in sample_item
assert isinstance(sample_item["reward"], torch.Tensor)
def test_add_feature_with_callable(sample_dataset, tmp_path):
"""Test adding a feature with a callable."""
def compute_reward(frame_dict, episode_idx, frame_idx):
return float(episode_idx * 10 + frame_idx)
feature_info = {
"dtype": "float32",
"shape": (1,),
"names": None,
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "with_reward")
new_dataset = add_feature(
sample_dataset,
feature_name="reward",
feature_values=compute_reward,
feature_info=feature_info,
output_dir=tmp_path / "with_reward",
)
assert "reward" in new_dataset.meta.features
items = [new_dataset[i] for i in range(10)]
first_episode_items = [item for item in items if item["episode_index"] == 0]
assert len(first_episode_items) == 10
first_frame = first_episode_items[0]
assert first_frame["frame_index"] == 0
assert float(first_frame["reward"]) == 0.0
def test_add_existing_feature(sample_dataset, tmp_path):
"""Test error when adding an existing feature."""
feature_info = {"dtype": "float32", "shape": (1,)}
with pytest.raises(ValueError, match="Feature 'action' already exists"):
add_feature(
sample_dataset,
feature_name="action",
feature_values=np.zeros(50),
feature_info=feature_info,
output_dir=tmp_path / "modified",
)
def test_add_feature_invalid_info(sample_dataset, tmp_path):
"""Test error with invalid feature info."""
with pytest.raises(ValueError, match="feature_info must contain keys"):
add_feature(
sample_dataset,
feature_name="reward",
feature_values=np.zeros(50),
feature_info={"dtype": "float32"},
output_dir=tmp_path / "modified",
)
def test_remove_single_feature(sample_dataset, tmp_path):
"""Test removing a single feature."""
feature_info = {"dtype": "float32", "shape": (1,), "names": None}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.side_effect = lambda repo_id, **kwargs: str(kwargs.get("local_dir", tmp_path))
dataset_with_reward = add_feature(
sample_dataset,
feature_name="reward",
feature_values=np.random.randn(50, 1).astype(np.float32),
feature_info=feature_info,
output_dir=tmp_path / "with_reward",
)
dataset_without_reward = remove_feature(
dataset_with_reward,
feature_names="reward",
output_dir=tmp_path / "without_reward",
)
assert "reward" not in dataset_without_reward.meta.features
sample_item = dataset_without_reward[0]
assert "reward" not in sample_item
def test_remove_multiple_features(sample_dataset, tmp_path):
"""Test removing multiple features at once."""
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.side_effect = lambda repo_id, **kwargs: str(kwargs.get("local_dir", tmp_path))
dataset = sample_dataset
for feature_name in ["reward", "success"]:
feature_info = {"dtype": "float32", "shape": (1,), "names": None}
dataset = add_feature(
dataset,
feature_name=feature_name,
feature_values=np.random.randn(dataset.meta.total_frames, 1).astype(np.float32),
feature_info=feature_info,
output_dir=tmp_path / f"with_{feature_name}",
)
dataset_clean = remove_feature(
dataset,
feature_names=["reward", "success"],
output_dir=tmp_path / "clean",
)
assert "reward" not in dataset_clean.meta.features
assert "success" not in dataset_clean.meta.features
def test_remove_nonexistent_feature(sample_dataset, tmp_path):
"""Test error when removing non-existent feature."""
with pytest.raises(ValueError, match="Feature 'nonexistent' not found"):
remove_feature(
sample_dataset,
feature_names="nonexistent",
output_dir=tmp_path / "modified",
)
def test_remove_required_feature(sample_dataset, tmp_path):
"""Test error when trying to remove required features."""
with pytest.raises(ValueError, match="Cannot remove required features"):
remove_feature(
sample_dataset,
feature_names="timestamp",
output_dir=tmp_path / "modified",
)
def test_remove_camera_feature(sample_dataset, tmp_path):
"""Test removing a camera feature."""
camera_keys = sample_dataset.meta.camera_keys
if not camera_keys:
pytest.skip("No camera keys in dataset")
camera_to_remove = camera_keys[0]
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "without_camera")
dataset_without_camera = remove_feature(
sample_dataset,
feature_names=camera_to_remove,
output_dir=tmp_path / "without_camera",
)
assert camera_to_remove not in dataset_without_camera.meta.features
assert camera_to_remove not in dataset_without_camera.meta.camera_keys
sample_item = dataset_without_camera[0]
assert camera_to_remove not in sample_item
def test_complex_workflow_integration(sample_dataset, tmp_path):
"""Test a complex workflow combining multiple operations."""
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.side_effect = lambda repo_id, **kwargs: str(kwargs.get("local_dir", tmp_path))
dataset = add_feature(
sample_dataset,
feature_name="reward",
feature_values=np.random.randn(50, 1).astype(np.float32),
feature_info={"dtype": "float32", "shape": (1,), "names": None},
output_dir=tmp_path / "step1",
)
dataset = delete_episodes(
dataset,
episode_indices=[2],
output_dir=tmp_path / "step2",
)
splits = split_dataset(
dataset,
splits={"train": 0.75, "val": 0.25},
output_dir=tmp_path / "step3",
)
merged = merge_datasets(
list(splits.values()),
output_repo_id="final_dataset",
output_dir=tmp_path / "step4",
)
assert merged.meta.total_episodes == 4
assert merged.meta.total_frames == 40
assert "reward" in merged.meta.features
assert len(merged) == 40
sample_item = merged[0]
assert "reward" in sample_item
def test_delete_episodes_preserves_stats(sample_dataset, tmp_path):
"""Test that deleting episodes preserves statistics correctly."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[2],
output_dir=output_dir,
)
assert new_dataset.meta.stats is not None
for feature in ["action", "observation.state"]:
assert feature in new_dataset.meta.stats
assert "mean" in new_dataset.meta.stats[feature]
assert "std" in new_dataset.meta.stats[feature]
def test_delete_episodes_preserves_tasks(sample_dataset, tmp_path):
"""Test that tasks are preserved correctly after deletion."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[0],
output_dir=output_dir,
)
assert new_dataset.meta.tasks is not None
assert len(new_dataset.meta.tasks) == 2
tasks_in_dataset = {str(item["task"]) for item in new_dataset}
assert len(tasks_in_dataset) > 0
def test_split_three_ways(sample_dataset, tmp_path):
"""Test splitting dataset into three splits."""
splits = {
"train": 0.6,
"val": 0.2,
"test": 0.2,
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
def mock_snapshot(repo_id, **kwargs):
for split_name in splits:
if split_name in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_{split_name}")
return str(kwargs.get("local_dir", tmp_path))
mock_snapshot_download.side_effect = mock_snapshot
result = split_dataset(
sample_dataset,
splits=splits,
output_dir=tmp_path,
)
assert set(result.keys()) == {"train", "val", "test"}
assert result["train"].meta.total_episodes == 3
assert result["val"].meta.total_episodes == 1
assert result["test"].meta.total_episodes == 1
total_frames = sum(ds.meta.total_frames for ds in result.values())
assert total_frames == sample_dataset.meta.total_frames
def test_split_preserves_stats(sample_dataset, tmp_path):
"""Test that statistics are preserved when splitting."""
splits = {"train": [0, 1, 2], "val": [3, 4]}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
def mock_snapshot(repo_id, **kwargs):
for split_name in splits:
if split_name in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_{split_name}")
return str(kwargs.get("local_dir", tmp_path))
mock_snapshot_download.side_effect = mock_snapshot
result = split_dataset(
sample_dataset,
splits=splits,
output_dir=tmp_path,
)
for split_ds in result.values():
assert split_ds.meta.stats is not None
for feature in ["action", "observation.state"]:
assert feature in split_ds.meta.stats
assert "mean" in split_ds.meta.stats[feature]
assert "std" in split_ds.meta.stats[feature]
def test_merge_three_datasets(sample_dataset, tmp_path, empty_lerobot_dataset_factory):
"""Test merging three datasets."""
features = {
"action": {"dtype": "float32", "shape": (6,), "names": None},
"observation.state": {"dtype": "float32", "shape": (4,), "names": None},
"observation.images.top": {"dtype": "image", "shape": (224, 224, 3), "names": None},
}
datasets = [sample_dataset]
for i in range(2):
dataset = empty_lerobot_dataset_factory(
root=tmp_path / f"test_dataset{i + 2}",
features=features,
)
for ep_idx in range(2):
for _ in range(10):
frame = {
"action": np.random.randn(6).astype(np.float32),
"observation.state": np.random.randn(4).astype(np.float32),
"observation.images.top": np.random.randint(0, 255, size=(224, 224, 3), dtype=np.uint8),
"task": f"task_{ep_idx}",
}
dataset.add_frame(frame)
dataset.save_episode()
dataset.finalize()
datasets.append(dataset)
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "merged_dataset")
merged = merge_datasets(
datasets,
output_repo_id="merged_dataset",
output_dir=tmp_path / "merged_dataset",
)
assert merged.meta.total_episodes == 9
assert merged.meta.total_frames == 90
def test_merge_preserves_stats(sample_dataset, tmp_path, empty_lerobot_dataset_factory):
"""Test that statistics are computed for merged datasets."""
features = {
"action": {"dtype": "float32", "shape": (6,), "names": None},
"observation.state": {"dtype": "float32", "shape": (4,), "names": None},
"observation.images.top": {"dtype": "image", "shape": (224, 224, 3), "names": None},
}
dataset2 = empty_lerobot_dataset_factory(
root=tmp_path / "test_dataset2",
features=features,
)
for ep_idx in range(3):
for _ in range(10):
frame = {
"action": np.random.randn(6).astype(np.float32),
"observation.state": np.random.randn(4).astype(np.float32),
"observation.images.top": np.random.randint(0, 255, size=(224, 224, 3), dtype=np.uint8),
"task": f"task_{ep_idx % 2}",
}
dataset2.add_frame(frame)
dataset2.save_episode()
dataset2.finalize()
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "merged_dataset")
merged = merge_datasets(
[sample_dataset, dataset2],
output_repo_id="merged_dataset",
output_dir=tmp_path / "merged_dataset",
)
assert merged.meta.stats is not None
for feature in ["action", "observation.state"]:
assert feature in merged.meta.stats
assert "mean" in merged.meta.stats[feature]
assert "std" in merged.meta.stats[feature]
def test_add_feature_preserves_existing_stats(sample_dataset, tmp_path):
"""Test that adding a feature preserves existing stats."""
num_frames = sample_dataset.meta.total_frames
reward_values = np.random.randn(num_frames, 1).astype(np.float32)
feature_info = {
"dtype": "float32",
"shape": (1,),
"names": None,
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "with_reward")
new_dataset = add_feature(
sample_dataset,
feature_name="reward",
feature_values=reward_values,
feature_info=feature_info,
output_dir=tmp_path / "with_reward",
)
assert new_dataset.meta.stats is not None
for feature in ["action", "observation.state"]:
assert feature in new_dataset.meta.stats
assert "mean" in new_dataset.meta.stats[feature]
assert "std" in new_dataset.meta.stats[feature]
def test_remove_feature_updates_stats(sample_dataset, tmp_path):
"""Test that removing a feature removes it from stats."""
feature_info = {"dtype": "float32", "shape": (1,), "names": None}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.side_effect = lambda repo_id, **kwargs: str(kwargs.get("local_dir", tmp_path))
dataset_with_reward = add_feature(
sample_dataset,
feature_name="reward",
feature_values=np.random.randn(50, 1).astype(np.float32),
feature_info=feature_info,
output_dir=tmp_path / "with_reward",
)
dataset_without_reward = remove_feature(
dataset_with_reward,
feature_names="reward",
output_dir=tmp_path / "without_reward",
)
if dataset_without_reward.meta.stats:
assert "reward" not in dataset_without_reward.meta.stats
def test_delete_consecutive_episodes(sample_dataset, tmp_path):
"""Test deleting consecutive episodes."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[1, 2, 3],
output_dir=output_dir,
)
assert new_dataset.meta.total_episodes == 2
assert new_dataset.meta.total_frames == 20
episode_indices = sorted({int(idx.item()) for idx in new_dataset.hf_dataset["episode_index"]})
assert episode_indices == [0, 1]
def test_delete_first_and_last_episodes(sample_dataset, tmp_path):
"""Test deleting first and last episodes."""
output_dir = tmp_path / "filtered"
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(output_dir)
new_dataset = delete_episodes(
sample_dataset,
episode_indices=[0, 4],
output_dir=output_dir,
)
assert new_dataset.meta.total_episodes == 3
assert new_dataset.meta.total_frames == 30
episode_indices = sorted({int(idx.item()) for idx in new_dataset.hf_dataset["episode_index"]})
assert episode_indices == [0, 1, 2]
def test_split_all_episodes_assigned(sample_dataset, tmp_path):
"""Test that all episodes can be explicitly assigned to splits."""
splits = {
"split1": [0, 1],
"split2": [2, 3],
"split3": [4],
}
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
def mock_snapshot(repo_id, **kwargs):
for split_name in splits:
if split_name in repo_id:
return str(tmp_path / f"{sample_dataset.repo_id}_{split_name}")
return str(kwargs.get("local_dir", tmp_path))
mock_snapshot_download.side_effect = mock_snapshot
result = split_dataset(
sample_dataset,
splits=splits,
output_dir=tmp_path,
)
total_episodes = sum(ds.meta.total_episodes for ds in result.values())
assert total_episodes == sample_dataset.meta.total_episodes