* chore: replace hard-coded 'action' values with constants throughout all the source code * chore(tests): replace hard-coded action values with constants throughout all the test code
134 lines
4.1 KiB
Python
134 lines
4.1 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import pytest
|
|
import torch
|
|
from datasets import Dataset
|
|
from huggingface_hub import DatasetCard
|
|
|
|
from lerobot.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
|
|
from lerobot.datasets.utils import combine_feature_dicts, create_lerobot_dataset_card, hf_transform_to_torch
|
|
from lerobot.utils.constants import ACTION, OBS_IMAGES
|
|
|
|
|
|
def test_default_parameters():
|
|
card = create_lerobot_dataset_card()
|
|
assert isinstance(card, DatasetCard)
|
|
assert card.data.tags == ["LeRobot"]
|
|
assert card.data.task_categories == ["robotics"]
|
|
assert card.data.configs == [
|
|
{
|
|
"config_name": "default",
|
|
"data_files": "data/*/*.parquet",
|
|
}
|
|
]
|
|
|
|
|
|
def test_with_tags():
|
|
tags = ["tag1", "tag2"]
|
|
card = create_lerobot_dataset_card(tags=tags)
|
|
assert card.data.tags == ["LeRobot", "tag1", "tag2"]
|
|
|
|
|
|
def test_calculate_episode_data_index():
|
|
dataset = Dataset.from_dict(
|
|
{
|
|
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
|
|
"index": [0, 1, 2, 3, 4, 5],
|
|
"episode_index": [0, 0, 1, 2, 2, 2],
|
|
},
|
|
)
|
|
dataset.set_transform(hf_transform_to_torch)
|
|
episode_data_index = calculate_episode_data_index(dataset)
|
|
assert torch.equal(episode_data_index["from"], torch.tensor([0, 2, 3]))
|
|
assert torch.equal(episode_data_index["to"], torch.tensor([2, 3, 6]))
|
|
|
|
|
|
def test_merge_simple_vectors():
|
|
g1 = {
|
|
ACTION: {
|
|
"dtype": "float32",
|
|
"shape": (2,),
|
|
"names": ["ee.x", "ee.y"],
|
|
}
|
|
}
|
|
g2 = {
|
|
ACTION: {
|
|
"dtype": "float32",
|
|
"shape": (2,),
|
|
"names": ["ee.y", "ee.z"],
|
|
}
|
|
}
|
|
|
|
out = combine_feature_dicts(g1, g2)
|
|
|
|
assert ACTION in out
|
|
assert out[ACTION]["dtype"] == "float32"
|
|
# Names merged with preserved order and de-dupuplication
|
|
assert out[ACTION]["names"] == ["ee.x", "ee.y", "ee.z"]
|
|
# Shape correctly recomputed from names length
|
|
assert out[ACTION]["shape"] == (3,)
|
|
|
|
|
|
def test_merge_multiple_groups_order_and_dedup():
|
|
g1 = {ACTION: {"dtype": "float32", "shape": (2,), "names": ["a", "b"]}}
|
|
g2 = {ACTION: {"dtype": "float32", "shape": (2,), "names": ["b", "c"]}}
|
|
g3 = {ACTION: {"dtype": "float32", "shape": (3,), "names": ["a", "c", "d"]}}
|
|
|
|
out = combine_feature_dicts(g1, g2, g3)
|
|
|
|
assert out[ACTION]["names"] == ["a", "b", "c", "d"]
|
|
assert out[ACTION]["shape"] == (4,)
|
|
|
|
|
|
def test_non_vector_last_wins_for_images():
|
|
# Non-vector (images) with same name should be overwritten by the last image specified
|
|
g1 = {
|
|
f"{OBS_IMAGES}.front": {
|
|
"dtype": "image",
|
|
"shape": (3, 480, 640),
|
|
"names": ["channels", "height", "width"],
|
|
}
|
|
}
|
|
g2 = {
|
|
f"{OBS_IMAGES}.front": {
|
|
"dtype": "image",
|
|
"shape": (3, 720, 1280),
|
|
"names": ["channels", "height", "width"],
|
|
}
|
|
}
|
|
|
|
out = combine_feature_dicts(g1, g2)
|
|
assert out[f"{OBS_IMAGES}.front"]["shape"] == (3, 720, 1280)
|
|
assert out[f"{OBS_IMAGES}.front"]["dtype"] == "image"
|
|
|
|
|
|
def test_dtype_mismatch_raises():
|
|
g1 = {ACTION: {"dtype": "float32", "shape": (1,), "names": ["a"]}}
|
|
g2 = {ACTION: {"dtype": "float64", "shape": (1,), "names": ["b"]}}
|
|
|
|
with pytest.raises(ValueError, match="dtype mismatch for 'action'"):
|
|
_ = combine_feature_dicts(g1, g2)
|
|
|
|
|
|
def test_non_dict_passthrough_last_wins():
|
|
g1 = {"misc": 123}
|
|
g2 = {"misc": 456}
|
|
|
|
out = combine_feature_dicts(g1, g2)
|
|
# For non-dict entries the last one wins
|
|
assert out["misc"] == 456
|