Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Remi Cadene <re.cadene@gmail.com> Co-authored-by: Tavish <tavish9.chen@gmail.com> Co-authored-by: fracapuano <francesco.capuano@huggingface.co> Co-authored-by: CarolinePascal <caroline8.pascal@gmail.com>
149 lines
4.6 KiB
Python
149 lines
4.6 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
from datatrove.executor import LocalPipelineExecutor
|
|
from datatrove.executor.slurm import SlurmPipelineExecutor
|
|
from datatrove.pipeline.base import PipelineStep
|
|
from port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
|
|
|
from lerobot.datasets.aggregate import aggregate_datasets
|
|
from lerobot.utils.utils import init_logging
|
|
|
|
|
|
class AggregateDatasets(PipelineStep):
|
|
def __init__(
|
|
self,
|
|
repo_ids: list[str],
|
|
aggregated_repo_id: str,
|
|
):
|
|
super().__init__()
|
|
self.repo_ids = repo_ids
|
|
self.aggr_repo_id = aggregated_repo_id
|
|
|
|
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
|
init_logging()
|
|
|
|
# Since aggregate_datasets already handles parallel processing internally,
|
|
# we only need one worker to run the entire aggregation
|
|
if rank == 0:
|
|
logging.info(f"Starting aggregation of {len(self.repo_ids)} datasets into {self.aggr_repo_id}")
|
|
aggregate_datasets(self.repo_ids, self.aggr_repo_id)
|
|
logging.info("Aggregation complete!")
|
|
else:
|
|
logging.info(f"Worker {rank} skipping - only worker 0 performs aggregation")
|
|
|
|
|
|
def make_aggregate_executor(
|
|
repo_ids, repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
|
):
|
|
kwargs = {
|
|
"pipeline": [
|
|
AggregateDatasets(repo_ids, repo_id),
|
|
],
|
|
"logging_dir": str(logs_dir / job_name),
|
|
}
|
|
|
|
if slurm:
|
|
# For aggregation, we only need 1 task since aggregate_datasets handles everything
|
|
kwargs.update(
|
|
{
|
|
"job_name": job_name,
|
|
"tasks": 1, # Only need 1 task for aggregation
|
|
"workers": 1, # Only need 1 worker
|
|
"time": "08:00:00",
|
|
"partition": partition,
|
|
"cpus_per_task": cpus_per_task,
|
|
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
|
}
|
|
)
|
|
executor = SlurmPipelineExecutor(**kwargs)
|
|
else:
|
|
kwargs.update(
|
|
{
|
|
"tasks": 1,
|
|
"workers": 1,
|
|
}
|
|
)
|
|
executor = LocalPipelineExecutor(**kwargs)
|
|
|
|
return executor
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--repo-id",
|
|
type=str,
|
|
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
|
)
|
|
parser.add_argument(
|
|
"--logs-dir",
|
|
type=Path,
|
|
help="Path to logs directory for `datatrove`.",
|
|
)
|
|
parser.add_argument(
|
|
"--job-name",
|
|
type=str,
|
|
default="aggr_droid",
|
|
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--slurm",
|
|
type=int,
|
|
default=1,
|
|
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
|
)
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=1, # Changed default to 1 since aggregation doesn't need multiple workers
|
|
help="Number of slurm workers. For aggregation, this should be 1.",
|
|
)
|
|
parser.add_argument(
|
|
"--partition",
|
|
type=str,
|
|
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
|
)
|
|
parser.add_argument(
|
|
"--cpus-per-task",
|
|
type=int,
|
|
default=8,
|
|
help="Number of cpus that each slurm worker will use.",
|
|
)
|
|
parser.add_argument(
|
|
"--mem-per-cpu",
|
|
type=str,
|
|
default="1950M",
|
|
help="Memory per cpu that each worker will use.",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
kwargs = vars(args)
|
|
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
|
|
|
repo_ids = [f"{args.repo_id}_world_{DROID_SHARDS}_rank_{rank}" for rank in range(DROID_SHARDS)]
|
|
aggregate_executor = make_aggregate_executor(repo_ids, **kwargs)
|
|
aggregate_executor.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|