Files
lerobot/examples/tutorial/async-inf/robot_client.py
Francesco Capuano 326aca0a48 Add API Examples (#2289)
* (unscrewing things up) (#2288)

* fix: expose a function explicitly building a frame for inference

* fix: first make dataset frame, then make ready for inference

* fix: reducing reliance on lerobot record for policy's ouptuts too

* fix: encapsulating squeezing out + device handling from predict action

* fix: remove duplicated call to build_inference_frame and add a function to only perform data type handling (whole conversion is: keys matching + data type conversion)

* refactor(envs): add custom-observation-size (#2167)

* fix: add MockMotorBus to MockRobot

* rl: first drafts

* add: all components of HIL SERL

* fix: actor block works

* fix: less friction, less friction

* add: hil-serl complete example

* fix: dataset names

* fix: restructuring example folder

* fix: act works but found bug in how ACT works

* fix: same path for both pre and postprocessors

* fix: paths

* add: example usage for act

* add: using ACT example

* fix: training examples

* fix: using examples

* fix: camera index

* fix: rename workflows into tutorial so that the path of the files is lerobot/examples/tutorial/...

* fix: upload everything in one repo

* fix: model name

* fix: simplify model path

* add: VLAs example

---------

Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com>

* fix: minor fix using named attributes

* fix: change model to act

* fix: named attributes for inference frame building

* fix: minor fixes to smolvla

* fix: small changes to pi0

* remove: old file that should have never been committed (ups sorry sorry)

---------

Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com>
2025-10-23 14:18:13 +02:00

56 lines
2.0 KiB
Python

import threading
from lerobot.async_inference.configs import RobotClientConfig
from lerobot.async_inference.helpers import visualize_action_queue_size
from lerobot.async_inference.robot_client import RobotClient
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.robots.so100_follower import SO100FollowerConfig
# these cameras must match the ones expected by the policy - find your cameras with lerobot-find-cameras
# check the config.json on the Hub for the policy you are using to see the expected camera specs
camera_cfg = {
"up": OpenCVCameraConfig(index_or_path=0, width=640, height=480, fps=30),
"side": OpenCVCameraConfig(index_or_path=1, width=640, height=480, fps=30),
}
# # find ports using lerobot-find-port
follower_port = ... # something like "/dev/tty.usbmodem58760431631"
# # the robot ids are used the load the right calibration files
follower_id = ... # something like "follower_so100"
robot_cfg = SO100FollowerConfig(port=follower_port, id=follower_id, cameras=camera_cfg)
server_address = ... # something like "127.0.0.1:8080" if using localhost
# 3. Create client configuration
client_cfg = RobotClientConfig(
robot=robot_cfg,
server_address=server_address,
policy_device="mps",
policy_type="act",
pretrained_name_or_path="fracapuano/robot_learning_tutorial_act",
chunk_size_threshold=0.5, # g
actions_per_chunk=50, # make sure this is less than the max actions of the policy
)
# 4. Create and start client
client = RobotClient(client_cfg)
# 5. Provide a textual description of the task
task = ...
if client.start():
# Start action receiver thread
action_receiver_thread = threading.Thread(target=client.receive_actions, daemon=True)
action_receiver_thread.start()
try:
# Run the control loop
client.control_loop(task)
except KeyboardInterrupt:
client.stop()
action_receiver_thread.join()
# (Optionally) plot the action queue size
visualize_action_queue_size(client.action_queue_size)