Files
lerobot/lerobot/configs/env/aloha.yaml
Remi Cadene 9d002032d1 Add Aloha env and ACT policy
WIP Aloha env tests pass

Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1])

Update README

Copy past from act repo

Remove download.py add a WIP for Simxarm

Remove download.py add a WIP for Simxarm

Add act yaml (TODO: try train.py)

Training can runs (TODO: eval)

Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)

Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)

poetry lock

fix bug in compute_stats for action normalization

fix more bugs in normalization

fix training

fix import

PushtEnv inheriates AbstractEnv, Improve factory Normalization

Add _make_env to EnvAbstract

Add call_rendering_hooks to pusht env

SimxarmEnv inherites from AbstractEnv (NOT TESTED)

Add aloha tests artifacts + update pusht stats

fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255]

Small fix on simxarm

Add next to obs

Add top camera to Aloha env (TODO: make it compatible with set of cameras)

Add top camera to Aloha env (TODO: make it compatible with set of cameras)
2024-03-12 10:27:48 +00:00

26 lines
390 B
YAML

# @package _global_
eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
offline_steps: 25000
online_steps: 25000
fps: 50
env:
name: aloha
task: sim_insertion_human
from_pixels: True
pixels_only: False
image_size: [3, 480, 640]
action_repeat: 1
episode_length: 400
fps: ${fps}
policy:
state_dim: 14
action_dim: 14