363 lines
12 KiB
Python
363 lines
12 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Tests for Reward Classifier processor."""
|
|
|
|
import tempfile
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
|
|
from lerobot.policies.sac.reward_model.configuration_classifier import RewardClassifierConfig
|
|
from lerobot.policies.sac.reward_model.processor_classifier import make_classifier_processor
|
|
from lerobot.processor import (
|
|
DataProcessorPipeline,
|
|
DeviceProcessorStep,
|
|
IdentityProcessorStep,
|
|
NormalizerProcessorStep,
|
|
TransitionKey,
|
|
)
|
|
from lerobot.processor.converters import create_transition, transition_to_batch
|
|
from lerobot.utils.constants import OBS_IMAGE, OBS_STATE
|
|
|
|
|
|
def create_default_config():
|
|
"""Create a default Reward Classifier configuration for testing."""
|
|
config = RewardClassifierConfig()
|
|
config.input_features = {
|
|
OBS_STATE: PolicyFeature(type=FeatureType.STATE, shape=(10,)),
|
|
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
|
|
}
|
|
config.output_features = {
|
|
"reward": PolicyFeature(type=FeatureType.ACTION, shape=(1,)), # Classifier output
|
|
}
|
|
config.normalization_mapping = {
|
|
FeatureType.STATE: NormalizationMode.MEAN_STD,
|
|
FeatureType.VISUAL: NormalizationMode.IDENTITY,
|
|
FeatureType.ACTION: NormalizationMode.IDENTITY, # No normalization for classifier output
|
|
}
|
|
config.device = "cpu"
|
|
return config
|
|
|
|
|
|
def create_default_stats():
|
|
"""Create default dataset statistics for testing."""
|
|
return {
|
|
OBS_STATE: {"mean": torch.zeros(10), "std": torch.ones(10)},
|
|
OBS_IMAGE: {}, # No normalization for images
|
|
"reward": {}, # No normalization for classifier output
|
|
}
|
|
|
|
|
|
def test_make_classifier_processor_basic():
|
|
"""Test basic creation of Classifier processor."""
|
|
config = create_default_config()
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(config, stats)
|
|
|
|
# Check processor names
|
|
assert preprocessor.name == "classifier_preprocessor"
|
|
assert postprocessor.name == "classifier_postprocessor"
|
|
|
|
# Check steps in preprocessor
|
|
assert len(preprocessor.steps) == 3
|
|
assert isinstance(preprocessor.steps[0], NormalizerProcessorStep) # For input features
|
|
assert isinstance(preprocessor.steps[1], NormalizerProcessorStep) # For output features
|
|
assert isinstance(preprocessor.steps[2], DeviceProcessorStep)
|
|
|
|
# Check steps in postprocessor
|
|
assert len(postprocessor.steps) == 2
|
|
assert isinstance(postprocessor.steps[0], DeviceProcessorStep)
|
|
assert isinstance(postprocessor.steps[1], IdentityProcessorStep)
|
|
|
|
|
|
def test_classifier_processor_normalization():
|
|
"""Test that Classifier processor correctly normalizes data."""
|
|
config = create_default_config()
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(
|
|
config,
|
|
stats,
|
|
)
|
|
|
|
# Create test data
|
|
observation = {
|
|
OBS_STATE: torch.randn(10),
|
|
OBS_IMAGE: torch.randn(3, 224, 224),
|
|
}
|
|
action = torch.randn(1) # Dummy action/reward
|
|
transition = create_transition(observation, action)
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that data is processed
|
|
assert processed[OBS_STATE].shape == (10,)
|
|
assert processed[OBS_IMAGE].shape == (3, 224, 224)
|
|
assert processed[TransitionKey.ACTION.value].shape == (1,)
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
|
|
def test_classifier_processor_cuda():
|
|
"""Test Classifier processor with CUDA device."""
|
|
config = create_default_config()
|
|
config.device = "cuda"
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(
|
|
config,
|
|
stats,
|
|
)
|
|
|
|
# Create CPU data
|
|
observation = {
|
|
OBS_STATE: torch.randn(10),
|
|
OBS_IMAGE: torch.randn(3, 224, 224),
|
|
}
|
|
action = torch.randn(1)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that data is on CUDA
|
|
assert processed[OBS_STATE].device.type == "cuda"
|
|
assert processed[OBS_IMAGE].device.type == "cuda"
|
|
assert processed[TransitionKey.ACTION.value].device.type == "cuda"
|
|
|
|
# Process through postprocessor
|
|
postprocessed = postprocessor(processed[TransitionKey.ACTION.value])
|
|
|
|
# Check that output is back on CPU
|
|
assert postprocessed.device.type == "cpu"
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
|
|
def test_classifier_processor_accelerate_scenario():
|
|
"""Test Classifier processor in simulated Accelerate scenario."""
|
|
config = create_default_config()
|
|
config.device = "cuda:0"
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(
|
|
config,
|
|
stats,
|
|
)
|
|
|
|
# Simulate Accelerate: data already on GPU
|
|
device = torch.device("cuda:0")
|
|
observation = {
|
|
OBS_STATE: torch.randn(10).to(device),
|
|
OBS_IMAGE: torch.randn(3, 224, 224).to(device),
|
|
}
|
|
action = torch.randn(1).to(device)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that data stays on same GPU
|
|
assert processed[OBS_STATE].device == device
|
|
assert processed[OBS_IMAGE].device == device
|
|
assert processed[TransitionKey.ACTION.value].device == device
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires at least 2 GPUs")
|
|
def test_classifier_processor_multi_gpu():
|
|
"""Test Classifier processor with multi-GPU setup."""
|
|
config = create_default_config()
|
|
config.device = "cuda:0"
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(config, stats)
|
|
|
|
# Simulate data on different GPU
|
|
device = torch.device("cuda:1")
|
|
observation = {
|
|
OBS_STATE: torch.randn(10).to(device),
|
|
OBS_IMAGE: torch.randn(3, 224, 224).to(device),
|
|
}
|
|
action = torch.randn(1).to(device)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that data stays on cuda:1
|
|
assert processed[OBS_STATE].device == device
|
|
assert processed[OBS_IMAGE].device == device
|
|
assert processed[TransitionKey.ACTION.value].device == device
|
|
|
|
|
|
def test_classifier_processor_without_stats():
|
|
"""Test Classifier processor creation without dataset statistics."""
|
|
config = create_default_config()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(config, dataset_stats=None)
|
|
|
|
# Should still create processors
|
|
assert preprocessor is not None
|
|
assert postprocessor is not None
|
|
|
|
# Process should still work
|
|
observation = {
|
|
OBS_STATE: torch.randn(10),
|
|
OBS_IMAGE: torch.randn(3, 224, 224),
|
|
}
|
|
action = torch.randn(1)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
processed = preprocessor(batch)
|
|
assert processed is not None
|
|
|
|
|
|
def test_classifier_processor_save_and_load():
|
|
"""Test saving and loading Classifier processor."""
|
|
config = create_default_config()
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(config, stats)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
# Save preprocessor
|
|
preprocessor.save_pretrained(tmpdir)
|
|
|
|
# Load preprocessor
|
|
loaded_preprocessor = DataProcessorPipeline.from_pretrained(
|
|
tmpdir, config_filename="classifier_preprocessor.json"
|
|
)
|
|
|
|
# Test that loaded processor works
|
|
observation = {
|
|
OBS_STATE: torch.randn(10),
|
|
OBS_IMAGE: torch.randn(3, 224, 224),
|
|
}
|
|
action = torch.randn(1)
|
|
transition = create_transition(observation, action)
|
|
batch = transition_to_batch(transition)
|
|
|
|
processed = loaded_preprocessor(batch)
|
|
assert processed[OBS_STATE].shape == (10,)
|
|
assert processed[OBS_IMAGE].shape == (3, 224, 224)
|
|
assert processed[TransitionKey.ACTION.value].shape == (1,)
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
|
|
def test_classifier_processor_mixed_precision():
|
|
"""Test Classifier processor with mixed precision."""
|
|
config = create_default_config()
|
|
config.device = "cuda"
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(config, stats)
|
|
|
|
# Replace DeviceProcessorStep with one that uses float16
|
|
modified_steps = []
|
|
for step in preprocessor.steps:
|
|
if isinstance(step, DeviceProcessorStep):
|
|
modified_steps.append(DeviceProcessorStep(device=config.device, float_dtype="float16"))
|
|
else:
|
|
modified_steps.append(step)
|
|
preprocessor.steps = modified_steps
|
|
|
|
# Create test data
|
|
observation = {
|
|
OBS_STATE: torch.randn(10, dtype=torch.float32),
|
|
OBS_IMAGE: torch.randn(3, 224, 224, dtype=torch.float32),
|
|
}
|
|
action = torch.randn(1, dtype=torch.float32)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that data is converted to float16
|
|
assert processed[OBS_STATE].dtype == torch.float16
|
|
assert processed[OBS_IMAGE].dtype == torch.float16
|
|
assert processed[TransitionKey.ACTION.value].dtype == torch.float16
|
|
|
|
|
|
def test_classifier_processor_batch_data():
|
|
"""Test Classifier processor with batched data."""
|
|
config = create_default_config()
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(
|
|
config,
|
|
stats,
|
|
)
|
|
|
|
# Test with batched data
|
|
batch_size = 16
|
|
observation = {
|
|
OBS_STATE: torch.randn(batch_size, 10),
|
|
OBS_IMAGE: torch.randn(batch_size, 3, 224, 224),
|
|
}
|
|
action = torch.randn(batch_size, 1)
|
|
transition = create_transition(observation, action)
|
|
|
|
batch = transition_to_batch(transition)
|
|
|
|
# Process through preprocessor
|
|
|
|
processed = preprocessor(batch)
|
|
|
|
# Check that batch dimension is preserved
|
|
assert processed[OBS_STATE].shape == (batch_size, 10)
|
|
assert processed[OBS_IMAGE].shape == (batch_size, 3, 224, 224)
|
|
assert processed[TransitionKey.ACTION.value].shape == (batch_size, 1)
|
|
|
|
|
|
def test_classifier_processor_postprocessor_identity():
|
|
"""Test that Classifier postprocessor uses IdentityProcessor correctly."""
|
|
config = create_default_config()
|
|
stats = create_default_stats()
|
|
|
|
preprocessor, postprocessor = make_classifier_processor(
|
|
config,
|
|
stats,
|
|
)
|
|
|
|
# Create test data for postprocessor
|
|
reward = torch.tensor([[0.8], [0.3], [0.9]]) # Batch of rewards/predictions
|
|
transition = create_transition(action=reward)
|
|
|
|
_ = transition_to_batch(transition)
|
|
|
|
# Process through postprocessor
|
|
processed = postprocessor(reward)
|
|
|
|
# IdentityProcessor should leave values unchanged (except device)
|
|
assert torch.allclose(processed.cpu(), reward.cpu())
|
|
assert processed.device.type == "cpu"
|