* initial commit * change device in test * do detailed import * adhere to python 3.11 syntax * fix autodocstring * additionally * do same in other files * add model. prefix to all keys in state dict * use dummy stats * add pi05 * also shorten action_steps * fix test * all test pass! and fix tokenizer max length between 05 and 0 * remove test * fix transformer dependency * fix test * split pi0 and pi05 policy in seperate files * fix test * fix push to hub test * add some comments, license and readme * remove warning in config * add pi05 to factory * remove check * rename action_horizon to chunk_size * clean up padding of state and action (more in line with lerobot pi0) * add openpi image transforms for training and add more flexibility to _preprocess_images similar to lerobot pi0 * fix key match from pytorch state dict (similar keys to openpi implementation now) * also for pi05 * update to python 3.11 * revert to openpi transformer replace python 3.11 * fix(modeling pi0): nit warning message * use safeauto_docstring * fix: remove unused param * fix from pretrained * add preprocess tests * also compile forward method * Do not add model prefix to normalization * use same name for action and state dim as lerobot pi0 and remove fixed image keys * load from pretrained_path * temp: hardcode base model * fix override self.pretrained_path = None overwrite * rename to loss * remove additional image augmentations, lerobot dataset already does this * Add docs * put tests in test folder * Add test to instatiate all base models * go back to python 3.10 * update docs * adapt docs pi05 * change docs: finetune base model options * minor docs fixes and dependencies * remove todo * cast float64 to float32 for mps * skip if no transformers * fix tests * add new models to modelcard * add back init * fix circular input * feat: only run pi test on GPU * remove require_nightly_gpu * replace decorator test_pi0_openpi * rename action_dim, state_dim to max_action_dim, max_state_dim * fix doc and constants * cleanup tests * fix from pretrained * fix tests * add comment pi0 pi05 tests, add image features to pi0 pi05 hub tests * fix, state is included in language not in flow head * Move test to specific folder * and paligemma task with newline * remove add_special_tokens, not needed * feedback pr * Remove previous pi0 and rename pi0_openpi and pi05_openpi * Add Quantile stats to LeRobotDataset (#1985) * - Add RunningQuantileStats class for efficient histogram-based quantile computation - Integrate quantile parameters (compute_quantiles, quantiles) into LeRobotDataset - Support quantile computation during episode collection and aggregation - Add comprehensive function-based test suite (24 tests) for quantile functionality - Maintain full backward compatibility with existing stats computation - Enable configurable quantiles (default: [0.01, 0.99]) for robust normalization * style fixes, make quantiles computation by default to new datasets * fix tests * - Added DEFAULT_QUANTILES=[0.01, 0.10, 0.50, 0.90, 0.99] to be computed for each features instead of being chosen by the user - Fortified tests. * - add helper functions to reshape stats - add missing test for quantiles * - Add QUANTILE normalization mode to normalize the data with the 1st and 99th percentiles. - Add QUANTILE10 normalization mode to normalize the data with the 10th and 90th percentiles. * style fixes * Added missing lisence * Simplify compute_stats * - added script `augment_dataset_quantile_stats.py` so that we can add quantile stats to existing v3 datasets that dont have quatniles - modified quantile computation instead of using the edge for the value, interpolate the values in the bin * rename pi0/pi05 files * Remove open pi patch and use custom transformer branch for now * renaming * fix * Revert "fix" This reverts commit 1ea65730ac2cbca6e5869df734fbd4392561b3c6. * fix naming * feet(pi0/pi0.5): add pipeline (#2009) * feat(processor): convert openpi model with processor * TODO: Make test works * fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests - Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`. - Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`. - Enhanced task handling in tests to ensure proper formatting and batch size consistency. - Cleaned up commented-out test code for clarity. * refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy - Updated imports and references throughout the codebase to reflect the new naming convention. - Introduced a new processor file for PI0 to handle pre-processing and post-processing steps. - Adjusted tests to utilize the renamed classes, ensuring consistency and functionality. - Enhanced clarity and maintainability by removing outdated naming conventions. * refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration - Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions. - Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`. - Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter. - Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability. - Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility. * feat(processor): convert openpi model with processor * TODO: Make test works * fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests - Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`. - Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`. - Enhanced task handling in tests to ensure proper formatting and batch size consistency. - Cleaned up commented-out test code for clarity. * refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy - Updated imports and references throughout the codebase to reflect the new naming convention. - Introduced a new processor file for PI0 to handle pre-processing and post-processing steps. - Adjusted tests to utilize the renamed classes, ensuring consistency and functionality. - Enhanced clarity and maintainability by removing outdated naming conventions. * refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration - Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions. - Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`. - Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter. - Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability. - Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility. * refactor(pi05): update imports and rename configuration classes - Changed imports to reflect the new naming convention for PI05 configuration and policy classes. - Renamed `PI05OpenPIConfig` to `PI05Config` and `PI05OpenPIPolicy` to `PI05Policy` for consistency. - Introduced a new processor file for PI05, implementing pre-processing and post-processing steps. - Updated tests to utilize the renamed classes, ensuring functionality and consistency across the codebase. * update(pi05): increase tokenizer_max_length for improved processing - Changed the `tokenizer_max_length` from 48 to 200 to enhance the model's capability in handling longer sequences. - This adjustment aims to improve the overall performance and flexibility of the PI05 configuration. * add default for state (max_state_dim) * correct naming * fix import * cleanup code * remove unused test * us quantiles for action * move to device * remove discrete state assert * fix pi05 test * move pi05 to device * use base models in comparison tests * small renames for tests * change number of tokens pi05 test * fix openpi tokenization in test * fix hub test * fix test * assert lerobot vs openpi tests --------- Co-authored-by: Pepijn <pepijn@huggingface.co> * add headers * add back previously removed imports * update if statement load processor with dataset stats * remove to avoid circular import * inject dataset stats for pretrained models * check normalization before applying * add link to quantile augument script * fix(policies): transformers import for ci in PI0 & PI05 (#2039) * fix(policies): transformers import for ci in PI0 * fix(policies): transformers import for ci in PI05 * test(processor): fix expected raise when normalization types are missing (#2040) * switch normalization order pipeline for pi05 * Fix/quantiles script (#2064) * refactor augment stats with quantiles script add parallelization for faster processing shift the quantile normalization between -1 1 * fix replay buffer tests * fix comment * overwrite the pipeline normalization features with the policy features * remove double normalization overwrite * cleanup from pretrained * remove typo * also set norm_map * fix(augment_quantiles) images incorrectly divided by 255 * clamp quantiles * link to lerobot base models * rename tests * encorperate PR feedback * update docstring for RunningQuantileStats * update doc links * Revert "clamp quantiles" This reverts commit 172207471c8f2cb62958e9a9e6a0535ba3ff67d4. * fix self.paligemma * fix tests related to quantiles that were scaled to [0,1], the new range is [-1, 1] * fix libero doc and use different transformer branch * use fix branch instead of feat * update results libero * add new line * fix formatting * precommit * update results libero * update libero doc * update title * final changes * add quantiles to test * run pre commit --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Steven Palma <steven.palma@huggingface.co>
80 lines
4.0 KiB
Plaintext
80 lines
4.0 KiB
Plaintext
# π₀ (Pi0)
|
|
|
|
π₀ is a **Vision-Language-Action model for general robot control**, from Physical Intelligence. The LeRobot implementation is adapted from their open source [OpenPI](https://github.com/Physical-Intelligence/openpi) repository.
|
|
|
|
## Model Overview
|
|
|
|
π₀ represents a breakthrough in robotics as the first general-purpose robot foundation model developed by [Physical Intelligence](https://www.physicalintelligence.company/blog/pi0). Unlike traditional robot programs that are narrow specialists programmed for repetitive motions, π₀ is designed to be a generalist policy that can understand visual inputs, interpret natural language instructions, and control a variety of different robots across diverse tasks.
|
|
|
|
### The Vision for Physical Intelligence
|
|
|
|
As described by Physical Intelligence, while AI has achieved remarkable success in digital domains, from chess-playing to drug discovery, human intelligence still dramatically outpaces AI in the physical world. To paraphrase Moravec's paradox, winning a game of chess represents an "easy" problem for AI, but folding a shirt or cleaning up a table requires solving some of the most difficult engineering problems ever conceived. π₀ represents a first step toward developing artificial physical intelligence that enables users to simply ask robots to perform any task they want, just like they can with large language models.
|
|
|
|
### Architecture and Approach
|
|
|
|
π₀ combines several key innovations:
|
|
|
|
- **Flow Matching**: Uses a novel method to augment pre-trained VLMs with continuous action outputs via flow matching (a variant of diffusion models)
|
|
- **Cross-Embodiment Training**: Trained on data from 8 distinct robot platforms including UR5e, Bimanual UR5e, Franka, Bimanual Trossen, Bimanual ARX, Mobile Trossen, and Mobile Fibocom
|
|
- **Internet-Scale Pre-training**: Inherits semantic knowledge from a pre-trained 3B parameter Vision-Language Model
|
|
- **High-Frequency Control**: Outputs motor commands at up to 50 Hz for real-time dexterous manipulation
|
|
|
|
## Installation Requirements
|
|
|
|
1. Install LeRobot by following our [Installation Guide](./installation).
|
|
2. Install Pi0 dependencies by running:
|
|
|
|
```bash
|
|
pip install -e ".[pi]"
|
|
```
|
|
|
|
## Training Data and Capabilities
|
|
|
|
π₀ is trained on the largest robot interaction dataset to date, combining three key data sources:
|
|
|
|
1. **Internet-Scale Pre-training**: Vision-language data from the web for semantic understanding
|
|
2. **Open X-Embodiment Dataset**: Open-source robot manipulation datasets
|
|
3. **Physical Intelligence Dataset**: Large and diverse dataset of dexterous tasks across 8 distinct robots
|
|
|
|
## Usage
|
|
|
|
To use π₀ in LeRobot, specify the policy type as:
|
|
|
|
```python
|
|
policy.type=pi0
|
|
```
|
|
|
|
## Training
|
|
|
|
For training π₀, you can use the standard LeRobot training script with the appropriate configuration:
|
|
|
|
```bash
|
|
python src/lerobot/scripts/train.py \
|
|
--dataset.repo_id=your_dataset \
|
|
--policy.type=pi0 \
|
|
--output_dir=./outputs/pi0_training \
|
|
--job_name=pi0_training \
|
|
--policy.pretrained_path=lerobot/pi0_base \
|
|
--policy.repo_id=your_repo_id \
|
|
--policy.compile_model=true \
|
|
--policy.gradient_checkpointing=true \
|
|
--policy.dtype=bfloat16 \
|
|
--steps=3000 \
|
|
--policy.device=cuda \
|
|
--batch_size=32
|
|
```
|
|
|
|
### Key Training Parameters
|
|
|
|
- **`--policy.compile_model=true`**: Enables model compilation for faster training
|
|
- **`--policy.gradient_checkpointing=true`**: Reduces memory usage significantly during training
|
|
- **`--policy.dtype=bfloat16`**: Use mixed precision training for efficiency
|
|
- **`--batch_size=32`**: Batch size for training, adapt this based on your GPU memory
|
|
- **`--policy.pretrained_path=lerobot/pi0_base`**: The base π₀ model you want to finetune, options are:
|
|
- [lerobot/pi0_base](https://huggingface.co/lerobot/pi0_base)
|
|
- [lerobot/pi0_libero](https://huggingface.co/lerobot/pi0_libero) (specifically trained on the Libero dataset)
|
|
|
|
## License
|
|
|
|
This model follows the **Apache 2.0 License**, consistent with the original [OpenPI repository](https://github.com/Physical-Intelligence/openpi).
|