Files
lerobot/tests/datasets/test_aggregate.py
Michel Aractingi f55c6e89f0 Dataset v3 (#1412)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
Co-authored-by: Tavish <tavish9.chen@gmail.com>
Co-authored-by: fracapuano <francesco.capuano@huggingface.co>
Co-authored-by: CarolinePascal <caroline8.pascal@gmail.com>
2025-09-15 09:53:30 +02:00

293 lines
12 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import torch
from lerobot.datasets.aggregate import aggregate_datasets
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from tests.fixtures.constants import DUMMY_REPO_ID
def assert_episode_and_frame_counts(aggr_ds, expected_episodes, expected_frames):
"""Test that total number of episodes and frames are correctly aggregated."""
assert aggr_ds.num_episodes == expected_episodes, (
f"Expected {expected_episodes} episodes, got {aggr_ds.num_episodes}"
)
assert aggr_ds.num_frames == expected_frames, (
f"Expected {expected_frames} frames, got {aggr_ds.num_frames}"
)
def assert_dataset_content_integrity(aggr_ds, ds_0, ds_1):
"""Test that the content of both datasets is preserved correctly in the aggregated dataset."""
keys_to_ignore = ["episode_index", "index", "timestamp"]
# Test first part of dataset corresponds to ds_0, check first item (index 0) matches ds_0[0]
aggr_first_item = aggr_ds[0]
ds_0_first_item = ds_0[0]
# Compare all keys except episode_index and index which should be updated
for key in ds_0_first_item:
if key not in keys_to_ignore:
# Handle both tensor and non-tensor data
if torch.is_tensor(aggr_first_item[key]) and torch.is_tensor(ds_0_first_item[key]):
assert torch.allclose(aggr_first_item[key], ds_0_first_item[key], atol=1e-6), (
f"First item key '{key}' doesn't match between aggregated and ds_0"
)
else:
assert aggr_first_item[key] == ds_0_first_item[key], (
f"First item key '{key}' doesn't match between aggregated and ds_0"
)
# Check last item of ds_0 part (index len(ds_0)-1) matches ds_0[-1]
aggr_ds_0_last_item = aggr_ds[len(ds_0) - 1]
ds_0_last_item = ds_0[-1]
for key in ds_0_last_item:
if key not in keys_to_ignore:
# Handle both tensor and non-tensor data
if torch.is_tensor(aggr_ds_0_last_item[key]) and torch.is_tensor(ds_0_last_item[key]):
assert torch.allclose(aggr_ds_0_last_item[key], ds_0_last_item[key], atol=1e-6), (
f"Last ds_0 item key '{key}' doesn't match between aggregated and ds_0"
)
else:
assert aggr_ds_0_last_item[key] == ds_0_last_item[key], (
f"Last ds_0 item key '{key}' doesn't match between aggregated and ds_0"
)
# Test second part of dataset corresponds to ds_1
# Check first item of ds_1 part (index len(ds_0)) matches ds_1[0]
aggr_ds_1_first_item = aggr_ds[len(ds_0)]
ds_1_first_item = ds_1[0]
for key in ds_1_first_item:
if key not in keys_to_ignore:
# Handle both tensor and non-tensor data
if torch.is_tensor(aggr_ds_1_first_item[key]) and torch.is_tensor(ds_1_first_item[key]):
assert torch.allclose(aggr_ds_1_first_item[key], ds_1_first_item[key], atol=1e-6), (
f"First ds_1 item key '{key}' doesn't match between aggregated and ds_1"
)
else:
assert aggr_ds_1_first_item[key] == ds_1_first_item[key], (
f"First ds_1 item key '{key}' doesn't match between aggregated and ds_1"
)
# Check last item matches ds_1[-1]
aggr_last_item = aggr_ds[-1]
ds_1_last_item = ds_1[-1]
for key in ds_1_last_item:
if key not in keys_to_ignore:
# Handle both tensor and non-tensor data
if torch.is_tensor(aggr_last_item[key]) and torch.is_tensor(ds_1_last_item[key]):
assert torch.allclose(aggr_last_item[key], ds_1_last_item[key], atol=1e-6), (
f"Last item key '{key}' doesn't match between aggregated and ds_1"
)
else:
assert aggr_last_item[key] == ds_1_last_item[key], (
f"Last item key '{key}' doesn't match between aggregated and ds_1"
)
def assert_metadata_consistency(aggr_ds, ds_0, ds_1):
"""Test that metadata is correctly aggregated."""
# Test basic info
assert aggr_ds.fps == ds_0.fps == ds_1.fps, "FPS should be the same across all datasets"
assert aggr_ds.meta.info["robot_type"] == ds_0.meta.info["robot_type"] == ds_1.meta.info["robot_type"], (
"Robot type should be the same"
)
# Test features are the same
assert aggr_ds.features == ds_0.features == ds_1.features, "Features should be the same"
# Test tasks aggregation
expected_tasks = set(ds_0.meta.tasks.index) | set(ds_1.meta.tasks.index)
actual_tasks = set(aggr_ds.meta.tasks.index)
assert actual_tasks == expected_tasks, f"Expected tasks {expected_tasks}, got {actual_tasks}"
def assert_episode_indices_updated_correctly(aggr_ds, ds_0, ds_1):
"""Test that episode indices are correctly updated after aggregation."""
# ds_0 episodes should have episode_index 0 to ds_0.num_episodes-1
for i in range(len(ds_0)):
assert aggr_ds[i]["episode_index"] < ds_0.num_episodes, (
f"Episode index {aggr_ds[i]['episode_index']} at position {i} should be < {ds_0.num_episodes}"
)
def ds1_episodes_condition(ep_idx):
return (ep_idx >= ds_0.num_episodes) and (ep_idx < ds_0.num_episodes + ds_1.num_episodes)
# ds_1 episodes should have episode_index ds_0.num_episodes to total_episodes-1
for i in range(len(ds_0), len(ds_0) + len(ds_1)):
expected_min_episode_idx = ds_0.num_episodes
assert ds1_episodes_condition(aggr_ds[i]["episode_index"]), (
f"Episode index {aggr_ds[i]['episode_index']} at position {i} should be >= {expected_min_episode_idx}"
)
def assert_video_frames_integrity(aggr_ds, ds_0, ds_1):
"""Test that video frames are correctly preserved and frame indices are updated."""
def visual_frames_equal(frame1, frame2):
return torch.allclose(frame1, frame2)
video_keys = list(
filter(
lambda key: aggr_ds.meta.info["features"][key]["dtype"] == "video",
aggr_ds.meta.info["features"].keys(),
)
)
# Test the section corresponding to the first dataset (ds_0)
for i in range(len(ds_0)):
assert aggr_ds[i]["index"] == i, (
f"Frame index at position {i} should be {i}, but got {aggr_ds[i]['index']}"
)
for key in video_keys:
assert visual_frames_equal(aggr_ds[i][key], ds_0[i][key]), (
f"Visual frames at position {i} should be equal between aggregated and ds_0"
)
# Test the section corresponding to the second dataset (ds_1)
for i in range(len(ds_0), len(ds_0) + len(ds_1)):
# The frame index in the aggregated dataset should also match its position.
assert aggr_ds[i]["index"] == i, (
f"Frame index at position {i} should be {i}, but got {aggr_ds[i]['index']}"
)
for key in video_keys:
assert visual_frames_equal(aggr_ds[i][key], ds_1[i - len(ds_0)][key]), (
f"Visual frames at position {i} should be equal between aggregated and ds_1"
)
def assert_dataset_iteration_works(aggr_ds):
"""Test that we can iterate through the entire dataset without errors."""
for _ in aggr_ds:
pass
def test_aggregate_datasets(tmp_path, lerobot_dataset_factory):
"""Test basic aggregation functionality with standard parameters."""
ds_0_num_frames = 400
ds_1_num_frames = 800
ds_0_num_episodes = 10
ds_1_num_episodes = 25
# Create two datasets with different number of frames and episodes
ds_0 = lerobot_dataset_factory(
root=tmp_path / "test_0",
repo_id=f"{DUMMY_REPO_ID}_0",
total_episodes=ds_0_num_episodes,
total_frames=ds_0_num_frames,
)
ds_1 = lerobot_dataset_factory(
root=tmp_path / "test_1",
repo_id=f"{DUMMY_REPO_ID}_1",
total_episodes=ds_1_num_episodes,
total_frames=ds_1_num_frames,
)
aggregate_datasets(
repo_ids=[ds_0.repo_id, ds_1.repo_id],
roots=[ds_0.root, ds_1.root],
aggr_repo_id=f"{DUMMY_REPO_ID}_aggr",
aggr_root=tmp_path / "test_aggr",
)
# Mock the revision to prevent Hub calls during dataset loading
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "test_aggr")
aggr_ds = LeRobotDataset(f"{DUMMY_REPO_ID}_aggr", root=tmp_path / "test_aggr")
# Run all assertion functions
expected_total_episodes = ds_0.num_episodes + ds_1.num_episodes
expected_total_frames = ds_0.num_frames + ds_1.num_frames
assert_episode_and_frame_counts(aggr_ds, expected_total_episodes, expected_total_frames)
assert_dataset_content_integrity(aggr_ds, ds_0, ds_1)
assert_metadata_consistency(aggr_ds, ds_0, ds_1)
assert_episode_indices_updated_correctly(aggr_ds, ds_0, ds_1)
assert_video_frames_integrity(aggr_ds, ds_0, ds_1)
assert_dataset_iteration_works(aggr_ds)
def test_aggregate_with_low_threshold(tmp_path, lerobot_dataset_factory):
"""Test aggregation with small file size limits to force file rotation/sharding."""
ds_0_num_episodes = ds_1_num_episodes = 10
ds_0_num_frames = ds_1_num_frames = 400
ds_0 = lerobot_dataset_factory(
root=tmp_path / "small_0",
repo_id=f"{DUMMY_REPO_ID}_small_0",
total_episodes=ds_0_num_episodes,
total_frames=ds_0_num_frames,
)
ds_1 = lerobot_dataset_factory(
root=tmp_path / "small_1",
repo_id=f"{DUMMY_REPO_ID}_small_1",
total_episodes=ds_1_num_episodes,
total_frames=ds_1_num_frames,
)
# Use the new configurable parameters to force file rotation
aggregate_datasets(
repo_ids=[ds_0.repo_id, ds_1.repo_id],
roots=[ds_0.root, ds_1.root],
aggr_repo_id=f"{DUMMY_REPO_ID}_small_aggr",
aggr_root=tmp_path / "small_aggr",
# Tiny file size to trigger new file instantiation
data_files_size_in_mb=0.01,
video_files_size_in_mb=0.1,
)
# Mock the revision to prevent Hub calls during dataset loading
with (
patch("lerobot.datasets.lerobot_dataset.get_safe_version") as mock_get_safe_version,
patch("lerobot.datasets.lerobot_dataset.snapshot_download") as mock_snapshot_download,
):
mock_get_safe_version.return_value = "v3.0"
mock_snapshot_download.return_value = str(tmp_path / "small_aggr")
aggr_ds = LeRobotDataset(f"{DUMMY_REPO_ID}_small_aggr", root=tmp_path / "small_aggr")
# Verify aggregation worked correctly despite file size constraints
expected_total_episodes = ds_0_num_episodes + ds_1_num_episodes
expected_total_frames = ds_0_num_frames + ds_1_num_frames
assert_episode_and_frame_counts(aggr_ds, expected_total_episodes, expected_total_frames)
assert_dataset_content_integrity(aggr_ds, ds_0, ds_1)
assert_metadata_consistency(aggr_ds, ds_0, ds_1)
assert_episode_indices_updated_correctly(aggr_ds, ds_0, ds_1)
assert_video_frames_integrity(aggr_ds, ds_0, ds_1)
assert_dataset_iteration_works(aggr_ds)
# Check that multiple files were actually created due to small size limits
data_dir = tmp_path / "small_aggr" / "data"
video_dir = tmp_path / "small_aggr" / "videos"
if data_dir.exists():
parquet_files = list(data_dir.rglob("*.parquet"))
assert len(parquet_files) > 1, "Small file size limits should create multiple parquet files"
if video_dir.exists():
video_files = list(video_dir.rglob("*.mp4"))
assert len(video_files) > 1, "Small file size limits should create multiple video files"