Files
lerobot/lerobot/scripts/server/kinematics.py
2025-03-28 17:18:48 +00:00

522 lines
18 KiB
Python

import numpy as np
from scipy.spatial.transform import Rotation
def skew_symmetric(w):
"""Creates the skew-symmetric matrix from a 3D vector."""
return np.array([[0, -w[2], w[1]], [w[2], 0, -w[0]], [-w[1], w[0], 0]])
def rodrigues_rotation(w, theta):
"""Computes the rotation matrix using Rodrigues' formula."""
w_hat = skew_symmetric(w)
return np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
def screw_axis_to_transform(S, theta):
"""Converts a screw axis to a 4x4 transformation matrix."""
S_w = S[:3]
S_v = S[3:]
if np.allclose(S_w, 0) and np.linalg.norm(S_v) == 1: # Pure translation
T = np.eye(4)
T[:3, 3] = S_v * theta
elif np.linalg.norm(S_w) == 1: # Rotation and translation
w_hat = skew_symmetric(S_w)
R = np.eye(3) + np.sin(theta) * w_hat + (1 - np.cos(theta)) * w_hat @ w_hat
t = (np.eye(3) * theta + (1 - np.cos(theta)) * w_hat + (theta - np.sin(theta)) * w_hat @ w_hat) @ S_v
T = np.eye(4)
T[:3, :3] = R
T[:3, 3] = t
else:
raise ValueError("Invalid screw axis parameters")
return T
def pose_difference_se3(pose1, pose2):
"""
Calculates the SE(3) difference between two 4x4 homogeneous transformation matrices.
pose1 - pose2
Args:
pose1: A 4x4 numpy array representing the first pose.
pose2: A 4x4 numpy array representing the second pose.
Returns:
A tuple (translation_diff, rotation_diff) where:
- translation_diff is a 3x1 numpy array representing the translational difference.
- rotation_diff is a 3x1 numpy array representing the rotational difference in axis-angle representation.
"""
# Extract rotation matrices from poses
R1 = pose1[:3, :3]
R2 = pose2[:3, :3]
# Calculate translational difference
translation_diff = pose1[:3, 3] - pose2[:3, 3]
# Calculate rotational difference using scipy's Rotation library
R_diff = Rotation.from_matrix(R1 @ R2.T)
rotation_diff = R_diff.as_rotvec() # Convert to axis-angle representation
return np.concatenate([translation_diff, rotation_diff])
def se3_error(target_pose, current_pose):
pos_error = target_pose[:3, 3] - current_pose[:3, 3]
R_target = target_pose[:3, :3]
R_current = current_pose[:3, :3]
R_error = R_target @ R_current.T
rot_error = Rotation.from_matrix(R_error).as_rotvec()
return np.concatenate([pos_error, rot_error])
class RobotKinematics:
"""Robot kinematics class supporting multiple robot models."""
# Robot measurements dictionary
ROBOT_MEASUREMENTS = {
"koch": {
"gripper": [0.239, -0.001, 0.024],
"wrist": [0.209, 0, 0.024],
"forearm": [0.108, 0, 0.02],
"humerus": [0, 0, 0.036],
"shoulder": [0, 0, 0],
"base": [0, 0, 0.02],
},
"so100": {
"gripper": [0.320, 0, 0.050],
"wrist": [0.278, 0, 0.050],
"forearm": [0.143, 0, 0.044],
"humerus": [0.031, 0, 0.072],
"shoulder": [0, 0, 0],
"base": [0, 0, 0.02],
},
"moss": {
"gripper": [0.246, 0.013, 0.111],
"wrist": [0.245, 0.002, 0.064],
"forearm": [0.122, 0, 0.064],
"humerus": [0.001, 0.001, 0.063],
"shoulder": [0, 0, 0],
"base": [0, 0, 0.02],
},
}
def __init__(self, robot_type="so100"):
"""Initialize kinematics for the specified robot type.
Args:
robot_type: String specifying the robot model ("koch", "so100", or "moss")
"""
if robot_type not in self.ROBOT_MEASUREMENTS:
raise ValueError(
f"Unknown robot type: {robot_type}. Available types: {list(self.ROBOT_MEASUREMENTS.keys())}"
)
self.robot_type = robot_type
self.measurements = self.ROBOT_MEASUREMENTS[robot_type]
# Initialize all transformation matrices and screw axes
self._setup_transforms()
def _create_translation_matrix(self, x=0, y=0, z=0):
"""Create a 4x4 translation matrix."""
return np.array([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]])
def _setup_transforms(self):
"""Setup all transformation matrices and screw axes for the robot."""
# Set up rotation matrices (constant across robot types)
# Gripper orientation
self.gripper_X0 = np.array(
[
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, -1, 0, 0],
[0, 0, 0, 1],
]
)
# Wrist orientation
self.wrist_X0 = np.array(
[
[0, -1, 0, 0],
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
]
)
# Base orientation
self.base_X0 = np.array(
[
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
]
)
# Gripper
# Screw axis of gripper frame wrt base frame
self.S_BG = np.array(
[
1,
0,
0,
0,
self.measurements["gripper"][2],
-self.measurements["gripper"][1],
]
)
# Gripper origin to centroid transform
self.X_GoGc = self._create_translation_matrix(x=0.07)
# Gripper origin to tip transform
self.X_GoGt = self._create_translation_matrix(x=0.12)
# 0-position gripper frame pose wrt base
self.X_BoGo = self._create_translation_matrix(
x=self.measurements["gripper"][0],
y=self.measurements["gripper"][1],
z=self.measurements["gripper"][2],
)
# Wrist
# Screw axis of wrist frame wrt base frame
self.S_BR = np.array([0, 1, 0, -self.measurements["wrist"][2], 0, self.measurements["wrist"][0]])
# 0-position origin to centroid transform
self.X_RoRc = self._create_translation_matrix(x=0.0035, y=-0.002)
# 0-position wrist frame pose wrt base
self.X_BR = self._create_translation_matrix(
x=self.measurements["wrist"][0],
y=self.measurements["wrist"][1],
z=self.measurements["wrist"][2],
)
# Forearm
# Screw axis of forearm frame wrt base frame
self.S_BF = np.array(
[
0,
1,
0,
-self.measurements["forearm"][2],
0,
self.measurements["forearm"][0],
]
)
# Forearm origin + centroid transform
self.X_FoFc = self._create_translation_matrix(x=0.036)
# 0-position forearm frame pose wrt base
self.X_BF = self._create_translation_matrix(
x=self.measurements["forearm"][0],
y=self.measurements["forearm"][1],
z=self.measurements["forearm"][2],
)
# Humerus
# Screw axis of humerus frame wrt base frame
self.S_BH = np.array(
[
0,
-1,
0,
self.measurements["humerus"][2],
0,
-self.measurements["humerus"][0],
]
)
# Humerus origin to centroid transform
self.X_HoHc = self._create_translation_matrix(x=0.0475)
# 0-position humerus frame pose wrt base
self.X_BH = self._create_translation_matrix(
x=self.measurements["humerus"][0],
y=self.measurements["humerus"][1],
z=self.measurements["humerus"][2],
)
# Shoulder
# Screw axis of shoulder frame wrt Base frame
self.S_BS = np.array([0, 0, -1, 0, 0, 0])
# Shoulder origin to centroid transform
self.X_SoSc = self._create_translation_matrix(x=-0.017, z=0.0235)
# 0-position shoulder frame pose wrt base
self.X_BS = self._create_translation_matrix(
x=self.measurements["shoulder"][0],
y=self.measurements["shoulder"][1],
z=self.measurements["shoulder"][2],
)
# Base
# Base origin to centroid transform
self.X_BoBc = self._create_translation_matrix(y=0.015)
# World to base transform
self.X_WoBo = self._create_translation_matrix(
x=self.measurements["base"][0],
y=self.measurements["base"][1],
z=self.measurements["base"][2],
)
# Pre-compute gripper post-multiplication matrix
self._fk_gripper_post = self.X_GoGc @ self.X_BoGo @ self.gripper_X0
def fk_base(self):
"""Forward kinematics for the base frame."""
return self.X_WoBo @ self.X_BoBc @ self.base_X0
def fk_shoulder(self, robot_pos_deg):
"""Forward kinematics for the shoulder frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return self.X_WoBo @ screw_axis_to_transform(self.S_BS, robot_pos_rad[0]) @ self.X_SoSc @ self.X_BS
def fk_humerus(self, robot_pos_deg):
"""Forward kinematics for the humerus frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return (
self.X_WoBo
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
@ self.X_HoHc
@ self.X_BH
)
def fk_forearm(self, robot_pos_deg):
"""Forward kinematics for the forearm frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return (
self.X_WoBo
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
@ self.X_FoFc
@ self.X_BF
)
def fk_wrist(self, robot_pos_deg):
"""Forward kinematics for the wrist frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return (
self.X_WoBo
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
@ self.X_RoRc
@ self.X_BR
@ self.wrist_X0
)
def fk_gripper(self, robot_pos_deg):
"""Forward kinematics for the gripper frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return (
self.X_WoBo
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
@ self._fk_gripper_post
)
def fk_gripper_tip(self, robot_pos_deg):
"""Forward kinematics for the gripper tip frame."""
robot_pos_rad = robot_pos_deg / 180 * np.pi
return (
self.X_WoBo
@ screw_axis_to_transform(self.S_BS, robot_pos_rad[0])
@ screw_axis_to_transform(self.S_BH, robot_pos_rad[1])
@ screw_axis_to_transform(self.S_BF, robot_pos_rad[2])
@ screw_axis_to_transform(self.S_BR, robot_pos_rad[3])
@ screw_axis_to_transform(self.S_BG, robot_pos_rad[4])
@ self.X_GoGt
@ self.X_BoGo
@ self.gripper_X0
)
def compute_jacobian(self, robot_pos_deg, fk_func=None):
"""Finite differences to compute the Jacobian.
J(i, j) represents how the ith component of the end-effector's velocity changes wrt a small change
in the jth joint's velocity.
Args:
robot_pos_deg: Current joint positions in degrees
fk_func: Forward kinematics function to use (defaults to fk_gripper)
"""
if fk_func is None:
fk_func = self.fk_gripper
eps = 1e-8
jac = np.zeros(shape=(6, 5))
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
for el_ix in range(len(robot_pos_deg[:-1])):
delta *= 0
delta[el_ix] = eps / 2
Sdot = (
pose_difference_se3(
fk_func(robot_pos_deg[:-1] + delta),
fk_func(robot_pos_deg[:-1] - delta),
)
/ eps
)
jac[:, el_ix] = Sdot
return jac
def compute_positional_jacobian(self, robot_pos_deg, fk_func=None):
"""Finite differences to compute the positional Jacobian.
J(i, j) represents how the ith component of the end-effector's position changes wrt a small change
in the jth joint's velocity.
Args:
robot_pos_deg: Current joint positions in degrees
fk_func: Forward kinematics function to use (defaults to fk_gripper)
"""
if fk_func is None:
fk_func = self.fk_gripper
eps = 1e-8
jac = np.zeros(shape=(3, 5))
delta = np.zeros(len(robot_pos_deg[:-1]), dtype=np.float64)
for el_ix in range(len(robot_pos_deg[:-1])):
delta *= 0
delta[el_ix] = eps / 2
Sdot = (
fk_func(robot_pos_deg[:-1] + delta)[:3, 3] - fk_func(robot_pos_deg[:-1] - delta)[:3, 3]
) / eps
jac[:, el_ix] = Sdot
return jac
def ik(self, current_joint_state, desired_ee_pose, position_only=True, fk_func=None):
"""Inverse kinematics using gradient descent.
Args:
current_joint_state: Initial joint positions in degrees
desired_ee_pose: Target end-effector pose as a 4x4 transformation matrix
position_only: If True, only match end-effector position, not orientation
fk_func: Forward kinematics function to use (defaults to fk_gripper)
Returns:
Joint positions in degrees that achieve the desired end-effector pose
"""
if fk_func is None:
fk_func = self.fk_gripper
# Do gradient descent.
max_iterations = 5
learning_rate = 1
for _ in range(max_iterations):
current_ee_pose = fk_func(current_joint_state)
if not position_only:
error = se3_error(desired_ee_pose, current_ee_pose)
jac = self.compute_jacobian(current_joint_state, fk_func)
else:
error = desired_ee_pose[:3, 3] - current_ee_pose[:3, 3]
jac = self.compute_positional_jacobian(current_joint_state, fk_func)
delta_angles = np.linalg.pinv(jac) @ error
current_joint_state[:-1] += learning_rate * delta_angles
if np.linalg.norm(error) < 5e-3:
return current_joint_state
return current_joint_state
if __name__ == "__main__":
import time
def run_test(robot_type):
"""Run test suite for a specific robot type."""
print(f"\n--- Testing {robot_type.upper()} Robot ---")
# Initialize kinematics for this robot
robot = RobotKinematics(robot_type)
# Test 1: Forward kinematics consistency
print("Test 1: Forward kinematics consistency")
test_angles = np.array([30, 45, -30, 20, 10, 0]) # Example joint angles in degrees
# Calculate FK for different joints
shoulder_pose = robot.fk_shoulder(test_angles)
humerus_pose = robot.fk_humerus(test_angles)
forearm_pose = robot.fk_forearm(test_angles)
wrist_pose = robot.fk_wrist(test_angles)
gripper_pose = robot.fk_gripper(test_angles)
gripper_tip_pose = robot.fk_gripper_tip(test_angles)
# Check that poses form a consistent kinematic chain (positions should be progressively further from origin)
distances = [
np.linalg.norm(shoulder_pose[:3, 3]),
np.linalg.norm(humerus_pose[:3, 3]),
np.linalg.norm(forearm_pose[:3, 3]),
np.linalg.norm(wrist_pose[:3, 3]),
np.linalg.norm(gripper_pose[:3, 3]),
np.linalg.norm(gripper_tip_pose[:3, 3]),
]
# Check if distances generally increase along the chain
is_consistent = all(distances[i] <= distances[i + 1] for i in range(len(distances) - 1))
print(f" Pose distances from origin: {[round(d, 3) for d in distances]}")
print(f" Kinematic chain consistency: {'PASSED' if is_consistent else 'FAILED'}")
# Test 2: Jacobian computation
print("Test 2: Jacobian computation")
jacobian = robot.compute_jacobian(test_angles)
positional_jacobian = robot.compute_positional_jacobian(test_angles)
# Check shapes
jacobian_shape_ok = jacobian.shape == (6, 5)
pos_jacobian_shape_ok = positional_jacobian.shape == (3, 5)
print(f" Jacobian shape: {'PASSED' if jacobian_shape_ok else 'FAILED'}")
print(f" Positional Jacobian shape: {'PASSED' if pos_jacobian_shape_ok else 'FAILED'}")
# Test 3: Inverse kinematics
print("Test 3: Inverse kinematics (position only)")
# Generate target pose from known joint angles
original_angles = np.array([10, 20, 30, -10, 5, 0])
target_pose = robot.fk_gripper(original_angles)
# Start IK from a different position
initial_guess = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
# Measure IK performance
start_time = time.time()
computed_angles = robot.ik(initial_guess.copy(), target_pose)
ik_time = time.time() - start_time
# Compute resulting pose from IK solution
result_pose = robot.fk_gripper(computed_angles)
# Calculate position error
pos_error = np.linalg.norm(target_pose[:3, 3] - result_pose[:3, 3])
passed = pos_error < 0.01 # Accept errors less than 1cm
print(f" IK computation time: {ik_time:.4f} seconds")
print(f" Position error: {pos_error:.4f}")
print(f" IK position accuracy: {'PASSED' if passed else 'FAILED'}")
return is_consistent and jacobian_shape_ok and pos_jacobian_shape_ok and passed
# Run tests for all robot types
results = {}
for robot_type in ["koch", "so100", "moss"]:
results[robot_type] = run_test(robot_type)
# Print overall summary
print("\n=== Test Summary ===")
all_passed = all(results.values())
for robot_type, passed in results.items():
print(f"{robot_type.upper()}: {'PASSED' if passed else 'FAILED'}")
print(f"\nOverall: {'ALL TESTS PASSED' if all_passed else 'SOME TESTS FAILED'}")