Files
lerobot/record.py
2025-12-10 09:36:49 +08:00

521 lines
21 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Records a dataset. Actions for the robot can be either generated by teleoperation or by a policy.
Example:
```shell
lerobot-record \
--robot.type=so100_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.cameras="{laptop: {type: opencv, index_or_path: 0, width: 640, height: 480, fps: 30}}" \
--robot.id=black \
--dataset.repo_id=<my_username>/<my_dataset_name> \
--dataset.num_episodes=2 \
--dataset.single_task="Grab the cube" \
--display_data=true
# <- Teleop optional if you want to teleoperate to record or in between episodes with a policy \
# --teleop.type=so100_leader \
# --teleop.port=/dev/tty.usbmodem58760431551 \
# --teleop.id=blue \
# <- Policy optional if you want to record with a policy \
# --policy.path=${HF_USER}/my_policy \
```
Example recording with bimanual so100:
```shell
lerobot-record \
--robot.type=bi_so100_follower \
--robot.left_arm_port=/dev/tty.usbmodem5A460851411 \
--robot.right_arm_port=/dev/tty.usbmodem5A460812391 \
--robot.id=bimanual_follower \
--robot.cameras='{
left: {"type": "opencv", "index_or_path": 0, "width": 640, "height": 480, "fps": 30},
top: {"type": "opencv", "index_or_path": 1, "width": 640, "height": 480, "fps": 30},
right: {"type": "opencv", "index_or_path": 2, "width": 640, "height": 480, "fps": 30}
}' \
--teleop.type=bi_so100_leader \
--teleop.left_arm_port=/dev/tty.usbmodem5A460828611 \
--teleop.right_arm_port=/dev/tty.usbmodem5A460826981 \
--teleop.id=bimanual_leader \
--display_data=true \
--dataset.repo_id=${HF_USER}/bimanual-so100-handover-cube \
--dataset.num_episodes=25 \
--dataset.single_task="Grab and handover the red cube to the other arm"
```
"""
import logging
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
from pprint import pformat
from typing import Any
from lerobot.cameras import ( # noqa: F401
CameraConfig, # noqa: F401
)
from lerobot.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
from lerobot.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
from lerobot.configs import parser
from lerobot.configs.policies import PreTrainedConfig
from lerobot.datasets.image_writer import safe_stop_image_writer
from lerobot.datasets.lerobot_dataset import LeRobotDataset
from lerobot.datasets.pipeline_features import aggregate_pipeline_dataset_features, create_initial_features
from lerobot.datasets.utils import build_dataset_frame, combine_feature_dicts
from lerobot.datasets.video_utils import VideoEncodingManager
from lerobot.policies.factory import make_policy, make_pre_post_processors
from lerobot.policies.pretrained import PreTrainedPolicy
from lerobot.processor import (
PolicyAction,
PolicyProcessorPipeline,
RobotAction,
RobotObservation,
RobotProcessorPipeline,
make_default_processors,
)
from lerobot.processor.rename_processor import rename_stats
from lerobot.robots import ( # noqa: F401
Robot,
RobotConfig,
bi_so100_follower,
hope_jr,
koch_follower,
make_robot_from_config,
so100_follower,
so101_follower,
)
from lerobot.teleoperators import ( # noqa: F401
Teleoperator,
TeleoperatorConfig,
bi_so100_leader,
homunculus,
koch_leader,
make_teleoperator_from_config,
so100_leader,
so101_leader,
)
from lerobot.teleoperators.keyboard.teleop_keyboard import KeyboardTeleop
from lerobot.utils.constants import ACTION, OBS_STR
from lerobot.utils.control_utils import (
init_keyboard_listener,
is_headless,
predict_action,
sanity_check_dataset_name,
sanity_check_dataset_robot_compatibility,
)
from lerobot.utils.robot_utils import precise_sleep
from lerobot.utils.utils import (
get_safe_torch_device,
init_logging,
log_say,
)
from lerobot.utils.visualization_utils import init_rerun, log_rerun_data
from robot_client.robots.realman import RealmanRobot,RealmanRobotConfig
from robot_client.teleoperators.xbox import Xbox,XboxConfig
from robot_client.teleoperators.flight_stick import FlightStick,FlightStickConfig
@dataclass
class DatasetRecordConfig:
# Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).
repo_id: str
# A short but accurate description of the task performed during the recording (e.g. "Pick the Lego block and drop it in the box on the right.")
single_task: str
# Root directory where the dataset will be stored (e.g. 'dataset/path').
root: str | Path | None = None
# Limit the frames per second.
fps: int = 30
# Number of seconds for data recording for each episode.
episode_time_s: int | float = 60
# Number of seconds for resetting the environment after each episode.
reset_time_s: int | float = 60
# Number of episodes to record.
num_episodes: int = 50
# Encode frames in the dataset into video
video: bool = True
# Upload dataset to Hugging Face hub.
push_to_hub: bool = True
# Upload on private repository on the Hugging Face hub.
private: bool = False
# Add tags to your dataset on the hub.
tags: list[str] | None = None
# Number of subprocesses handling the saving of frames as PNG. Set to 0 to use threads only;
# set to ≥1 to use subprocesses, each using threads to write images. The best number of processes
# and threads depends on your system. We recommend 4 threads per camera with 0 processes.
# If fps is unstable, adjust the thread count. If still unstable, try using 1 or more subprocesses.
num_image_writer_processes: int = 0
# Number of threads writing the frames as png images on disk, per camera.
# Too many threads might cause unstable teleoperation fps due to main thread being blocked.
# Not enough threads might cause low camera fps.
num_image_writer_threads_per_camera: int = 4
# Number of episodes to record before batch encoding videos
# Set to 1 for immediate encoding (default behavior), or higher for batched encoding
video_encoding_batch_size: int = 1
# Rename map for the observation to override the image and state keys
rename_map: dict[str, str] = field(default_factory=dict)
def __post_init__(self):
if self.single_task is None:
raise ValueError("You need to provide a task as argument in `single_task`.")
@dataclass
class RecordConfig:
robot: RobotConfig
dataset: DatasetRecordConfig
# Whether to control the robot with a teleoperator
teleop: TeleoperatorConfig | None = None
# Whether to control the robot with a policy
policy: PreTrainedConfig | None = None
# Display all cameras on screen
display_data: bool = False
# Use vocal synthesis to read events.
play_sounds: bool = True
# Resume recording on an existing dataset.
resume: bool = False
def __post_init__(self):
# HACK: We parse again the cli args here to get the pretrained path if there was one.
policy_path = parser.get_path_arg("policy")
if policy_path:
cli_overrides = parser.get_cli_overrides("policy")
self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides)
self.policy.pretrained_path = policy_path
if self.teleop is None and self.policy is None:
raise ValueError("Choose a policy, a teleoperator or both to control the robot")
@classmethod
def __get_path_fields__(cls) -> list[str]:
"""This enables the parser to load config from the policy using `--policy.path=local/dir`"""
return ["policy"]
""" --------------- record_loop() data flow --------------------------
[ Robot ]
V
[ robot.get_observation() ] ---> raw_obs
V
[ robot_observation_processor ] ---> processed_obs
V
.-----( ACTION LOGIC )------------------.
V V
[ From Teleoperator ] [ From Policy ]
| |
| [teleop.get_action] -> raw_action | [predict_action]
| | | |
| V | V
| [teleop_action_processor] | |
| | | |
'---> processed_teleop_action '---> processed_policy_action
| |
'-------------------------.-------------'
V
[ robot_action_processor ] --> robot_action_to_send
V
[ robot.send_action() ] -- (Robot Executes)
V
( Save to Dataset )
V
( Rerun Log / Loop Wait )
"""
@safe_stop_image_writer
def record_loop(
robot: Robot,
events: dict,
fps: int,
teleop_action_processor: RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
], # runs after teleop
robot_action_processor: RobotProcessorPipeline[
tuple[RobotAction, RobotObservation], RobotAction
], # runs before robot
robot_observation_processor: RobotProcessorPipeline[
RobotObservation, RobotObservation
], # runs after robot
dataset: LeRobotDataset | None = None,
teleop: Teleoperator | list[Teleoperator] | None = None,
policy: PreTrainedPolicy | None = None,
preprocessor: PolicyProcessorPipeline[dict[str, Any], dict[str, Any]] | None = None,
postprocessor: PolicyProcessorPipeline[PolicyAction, PolicyAction] | None = None,
control_time_s: int | None = None,
single_task: str | None = None,
display_data: bool = False,
):
if dataset is not None and dataset.fps != fps:
raise ValueError(f"The dataset fps should be equal to requested fps ({dataset.fps} != {fps}).")
teleop_arm = teleop_keyboard = None
if isinstance(teleop, list):
teleop_keyboard = next((t for t in teleop if isinstance(t, KeyboardTeleop)), None)
teleop_arm = next(
(
t
for t in teleop
if isinstance(
t,
(so100_leader.SO100Leader | so101_leader.SO101Leader | koch_leader.KochLeader),
)
),
None,
)
if not (teleop_arm and teleop_keyboard and len(teleop) == 2 and robot.name == "lekiwi_client"):
raise ValueError(
"For multi-teleop, the list must contain exactly one KeyboardTeleop and one arm teleoperator. Currently only supported for LeKiwi robot."
)
# Reset policy and processor if they are provided
if policy is not None and preprocessor is not None and postprocessor is not None:
policy.reset()
preprocessor.reset()
postprocessor.reset()
timestamp = 0
start_episode_t = time.perf_counter()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
if events["exit_early"]:
events["exit_early"] = False
break
# Get robot observation
obs = robot.get_observation()
# Applies a pipeline to the raw robot observation, default is IdentityProcessor
obs_processed = robot_observation_processor(obs)
if policy is not None or dataset is not None:
observation_frame = build_dataset_frame(dataset.features, obs_processed, prefix=OBS_STR)
# Get action from either policy or teleop
if policy is not None and preprocessor is not None and postprocessor is not None:
action_values = predict_action(
observation=observation_frame,
policy=policy,
device=get_safe_torch_device(policy.config.device),
preprocessor=preprocessor,
postprocessor=postprocessor,
use_amp=policy.config.use_amp,
task=single_task,
robot_type=robot.robot_type,
)
act_processed_policy: RobotAction = make_robot_action(action_values, dataset.features)
elif policy is None and isinstance(teleop, Teleoperator):
act = teleop.get_action()
# Applies a pipeline to the raw teleop action, default is IdentityProcessor
act_processed_teleop = teleop_action_processor((act, obs))
elif policy is None and isinstance(teleop, list):
arm_action = teleop_arm.get_action()
arm_action = {f"arm_{k}": v for k, v in arm_action.items()}
keyboard_action = teleop_keyboard.get_action()
base_action = robot._from_keyboard_to_base_action(keyboard_action)
act = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
act_processed_teleop = teleop_action_processor((act, obs))
else:
logging.info(
"No policy or teleoperator provided, skipping action generation."
"This is likely to happen when resetting the environment without a teleop device."
"The robot won't be at its rest position at the start of the next episode."
)
continue
# Applies a pipeline to the action, default is IdentityProcessor
if policy is not None and act_processed_policy is not None:
action_values = act_processed_policy
robot_action_to_send = robot_action_processor((act_processed_policy, obs))
else:
action_values = act_processed_teleop
robot_action_to_send = robot_action_processor((act_processed_teleop, obs))
# Send action to robot
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset. action = postprocessor.process(action)
# TODO(steven, pepijn, adil): we should use a pipeline step to clip the action, so the sent action is the action that we input to the robot.
_sent_action = robot.send_action(robot_action_to_send)
# Write to dataset
if dataset is not None:
action_frame = build_dataset_frame(dataset.features, action_values, prefix=ACTION)
frame = {**observation_frame, **action_frame, "task": single_task}
dataset.add_frame(frame)
if display_data:
log_rerun_data(observation=obs_processed, action=action_values)
dt_s = time.perf_counter() - start_loop_t
precise_sleep(1 / fps - dt_s)
timestamp = time.perf_counter() - start_episode_t
@parser.wrap()
def record(cfg: RecordConfig) -> LeRobotDataset:
init_logging()
logging.info(pformat(asdict(cfg)))
if cfg.display_data:
init_rerun(session_name="recording")
robot = make_robot_from_config(cfg.robot)
teleop = make_teleoperator_from_config(cfg.teleop) if cfg.teleop is not None else None
teleop_action_processor, robot_action_processor, robot_observation_processor = make_default_processors()
dataset_features = combine_feature_dicts(
aggregate_pipeline_dataset_features(
pipeline=teleop_action_processor,
initial_features=create_initial_features(
action=robot.action_features
), # TODO(steven, pepijn): in future this should be come from teleop or policy
use_videos=cfg.dataset.video,
),
aggregate_pipeline_dataset_features(
pipeline=robot_observation_processor,
initial_features=create_initial_features(observation=robot.observation_features),
use_videos=cfg.dataset.video,
),
)
if cfg.resume:
dataset = LeRobotDataset(
cfg.dataset.repo_id,
root=cfg.dataset.root,
batch_encoding_size=cfg.dataset.video_encoding_batch_size,
)
if hasattr(robot, "cameras") and len(robot.cameras) > 0:
dataset.start_image_writer(
num_processes=cfg.dataset.num_image_writer_processes,
num_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras),
)
sanity_check_dataset_robot_compatibility(dataset, robot, cfg.dataset.fps, dataset_features)
else:
# Create empty dataset or load existing saved episodes
sanity_check_dataset_name(cfg.dataset.repo_id, cfg.policy)
dataset = LeRobotDataset.create(
cfg.dataset.repo_id,
cfg.dataset.fps,
root=cfg.dataset.root,
robot_type=robot.name,
features=dataset_features,
use_videos=cfg.dataset.video,
image_writer_processes=cfg.dataset.num_image_writer_processes,
image_writer_threads=cfg.dataset.num_image_writer_threads_per_camera * len(robot.cameras),
batch_encoding_size=cfg.dataset.video_encoding_batch_size,
)
# Load pretrained policy
policy = None if cfg.policy is None else make_policy(cfg.policy, ds_meta=dataset.meta)
preprocessor = None
postprocessor = None
if cfg.policy is not None:
preprocessor, postprocessor = make_pre_post_processors(
policy_cfg=cfg.policy,
pretrained_path=cfg.policy.pretrained_path,
dataset_stats=rename_stats(dataset.meta.stats, cfg.dataset.rename_map),
preprocessor_overrides={
"device_processor": {"device": cfg.policy.device},
"rename_observations_processor": {"rename_map": cfg.dataset.rename_map},
},
)
robot.connect()
if teleop is not None:
teleop.connect()
listener, events = init_keyboard_listener()
with VideoEncodingManager(dataset):
recorded_episodes = 0
while recorded_episodes < cfg.dataset.num_episodes and not events["stop_recording"]:
log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds)
record_loop(
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop_action_processor=teleop_action_processor,
robot_action_processor=robot_action_processor,
robot_observation_processor=robot_observation_processor,
teleop=teleop,
policy=policy,
preprocessor=preprocessor,
postprocessor=postprocessor,
dataset=dataset,
control_time_s=cfg.dataset.episode_time_s,
single_task=cfg.dataset.single_task,
display_data=cfg.display_data,
)
# Execute a few seconds without recording to give time to manually reset the environment
# Skip reset for the last episode to be recorded
if not events["stop_recording"] and (
(recorded_episodes < cfg.dataset.num_episodes - 1) or events["rerecord_episode"]
):
log_say("Reset the environment", cfg.play_sounds)
record_loop(
robot=robot,
events=events,
fps=cfg.dataset.fps,
teleop_action_processor=teleop_action_processor,
robot_action_processor=robot_action_processor,
robot_observation_processor=robot_observation_processor,
teleop=teleop,
control_time_s=cfg.dataset.reset_time_s,
single_task=cfg.dataset.single_task,
display_data=cfg.display_data,
)
if events["rerecord_episode"]:
log_say("Re-record episode", cfg.play_sounds)
events["rerecord_episode"] = False
events["exit_early"] = False
dataset.clear_episode_buffer()
continue
dataset.save_episode()
recorded_episodes += 1
log_say("Stop recording", cfg.play_sounds, blocking=True)
robot.disconnect()
if teleop is not None:
teleop.disconnect()
if not is_headless() and listener is not None:
listener.stop()
if cfg.dataset.push_to_hub:
dataset.push_to_hub(tags=cfg.dataset.tags, private=cfg.dataset.private)
log_say("Exiting", cfg.play_sounds)
return dataset
def main():
record()
if __name__ == "__main__":
main()