Files
lerobot/docs/source/libero.mdx
Pepijn abde7be3b3 Add OpenPi, Pi0 and Pi0.5 (#1910)
* initial commit

* change device in test

* do detailed import

* adhere to python 3.11 syntax

* fix autodocstring

* additionally

* do same in other files

* add model. prefix to all keys in state dict

* use dummy stats

* add pi05

* also shorten action_steps

* fix test

* all test pass! and fix tokenizer max length between 05 and 0

* remove test

* fix transformer dependency

* fix test

* split pi0 and pi05 policy in seperate files

* fix test

* fix push to hub test

* add some comments, license and readme

* remove warning in config

* add pi05 to factory

* remove check

* rename action_horizon to chunk_size

* clean up padding of state and action (more in line with lerobot pi0)

* add openpi image transforms for training and add more flexibility to _preprocess_images similar to lerobot pi0

* fix key match from pytorch state dict (similar keys to openpi implementation now)

* also for pi05

* update to python 3.11

* revert to openpi transformer replace python 3.11

* fix(modeling pi0): nit  warning message

* use safeauto_docstring

* fix: remove unused param

* fix from pretrained

* add preprocess tests

* also compile forward method

* Do not add model prefix to normalization

* use same name for action and state dim as lerobot pi0 and remove fixed image keys

* load from pretrained_path

* temp: hardcode base model

* fix override self.pretrained_path = None overwrite

* rename to loss

* remove additional image augmentations, lerobot dataset already does this

* Add docs

* put tests in test folder

* Add test to instatiate all base models

* go back to python 3.10

* update docs

* adapt docs pi05

* change docs: finetune base model options

* minor docs fixes and dependencies

* remove todo

* cast float64 to float32 for mps

* skip if no transformers

* fix tests

* add new models to modelcard

* add back init

* fix circular input

* feat: only run pi test on GPU

* remove require_nightly_gpu

* replace decorator test_pi0_openpi

* rename action_dim, state_dim to max_action_dim, max_state_dim

* fix doc and constants

* cleanup tests

* fix from pretrained

* fix tests

* add comment pi0 pi05 tests, add image features to pi0 pi05 hub tests

* fix, state is included in language not in flow head

* Move test to specific folder

* and paligemma task with newline

* remove add_special_tokens, not needed

* feedback pr

* Remove previous pi0 and rename pi0_openpi and pi05_openpi

* Add Quantile stats to LeRobotDataset (#1985)

* - Add RunningQuantileStats class for efficient histogram-based quantile computation
- Integrate quantile parameters (compute_quantiles, quantiles) into LeRobotDataset
- Support quantile computation during episode collection and aggregation
- Add comprehensive function-based test suite (24 tests) for quantile functionality
- Maintain full backward compatibility with existing stats computation
- Enable configurable quantiles (default: [0.01, 0.99]) for robust normalization

* style fixes, make quantiles computation by default to new datasets

* fix tests

* - Added DEFAULT_QUANTILES=[0.01, 0.10, 0.50, 0.90, 0.99] to be computed for each features instead of being chosen by the user
- Fortified tests.

* - add helper functions to reshape stats
- add missing test for quantiles

* - Add QUANTILE normalization mode to normalize the data with the 1st and 99th percentiles.
- Add QUANTILE10 normalization mode to normalize the data with the 10th and 90th percentiles.

* style fixes

* Added missing lisence

* Simplify compute_stats

* - added script `augment_dataset_quantile_stats.py` so that we can add quantile stats to existing v3 datasets that dont have quatniles
- modified quantile computation instead of using the edge for the value, interpolate the values in the bin

* rename pi0/pi05 files

* Remove open pi patch and use custom transformer branch for now

* renaming

* fix

* Revert "fix"

This reverts commit 1ea65730ac2cbca6e5869df734fbd4392561b3c6.

* fix naming

* feet(pi0/pi0.5): add pipeline (#2009)

* feat(processor): convert openpi model with processor

* TODO: Make test works

* fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests

- Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`.
- Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`.
- Enhanced task handling in tests to ensure proper formatting and batch size consistency.
- Cleaned up commented-out test code for clarity.

* refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy

- Updated imports and references throughout the codebase to reflect the new naming convention.
- Introduced a new processor file for PI0 to handle pre-processing and post-processing steps.
- Adjusted tests to utilize the renamed classes, ensuring consistency and functionality.
- Enhanced clarity and maintainability by removing outdated naming conventions.

* refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration

- Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions.
- Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`.
- Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter.
- Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability.
- Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility.

* feat(processor): convert openpi model with processor

* TODO: Make test works

* fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests

- Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`.
- Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`.
- Enhanced task handling in tests to ensure proper formatting and batch size consistency.
- Cleaned up commented-out test code for clarity.

* refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy

- Updated imports and references throughout the codebase to reflect the new naming convention.
- Introduced a new processor file for PI0 to handle pre-processing and post-processing steps.
- Adjusted tests to utilize the renamed classes, ensuring consistency and functionality.
- Enhanced clarity and maintainability by removing outdated naming conventions.

* refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration

- Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions.
- Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`.
- Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter.
- Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability.
- Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility.

* refactor(pi05): update imports and rename configuration classes

- Changed imports to reflect the new naming convention for PI05 configuration and policy classes.
- Renamed `PI05OpenPIConfig` to `PI05Config` and `PI05OpenPIPolicy` to `PI05Policy` for consistency.
- Introduced a new processor file for PI05, implementing pre-processing and post-processing steps.
- Updated tests to utilize the renamed classes, ensuring functionality and consistency across the codebase.

* update(pi05): increase tokenizer_max_length for improved processing

- Changed the `tokenizer_max_length` from 48 to 200 to enhance the model's capability in handling longer sequences.
- This adjustment aims to improve the overall performance and flexibility of the PI05 configuration.

* add default for state (max_state_dim)

* correct naming

* fix import

* cleanup code

* remove unused test

* us quantiles for action

* move to device

* remove discrete state assert

* fix pi05 test

* move pi05 to device

* use base models in comparison tests

* small renames for tests

* change number of tokens pi05 test

* fix openpi tokenization in test

* fix hub test

* fix test

* assert lerobot vs openpi tests

---------

Co-authored-by: Pepijn <pepijn@huggingface.co>

* add headers

* add back previously removed imports

* update if statement load processor with dataset stats

* remove to avoid circular import

* inject dataset stats for pretrained models

* check normalization before applying

* add link to  quantile augument script

* fix(policies): transformers import for ci in PI0 & PI05 (#2039)

* fix(policies): transformers import for ci in PI0

* fix(policies): transformers import for ci in PI05

* test(processor): fix expected raise when normalization types are missing (#2040)

* switch normalization order pipeline for pi05

* Fix/quantiles script (#2064)

* refactor augment stats with quantiles script
add parallelization for faster processing
shift the quantile normalization between -1 1

* fix replay buffer tests

* fix comment

* overwrite the pipeline normalization features with the policy features

* remove double normalization overwrite

* cleanup from pretrained

* remove typo

* also set norm_map

* fix(augment_quantiles) images incorrectly divided by 255

* clamp quantiles

* link to lerobot base models

* rename tests

* encorperate PR feedback

* update docstring for RunningQuantileStats

* update doc links

* Revert "clamp quantiles"

This reverts commit 172207471c8f2cb62958e9a9e6a0535ba3ff67d4.

* fix self.paligemma

* fix tests related to quantiles that were scaled to [0,1], the new range is [-1, 1]

* fix libero doc and use different transformer branch

* use fix branch instead of feat

* update results libero

* add new line

* fix formatting

* precommit

* update results libero

* update libero doc

* update title

* final changes

* add quantiles to test

* run pre commit

---------

Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-10-02 13:14:45 +02:00

167 lines
7.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# LIBERO
**LIBERO** is a benchmark designed to study **lifelong robot learning**. The idea is that robots wont just be pretrained once in a factory, theyll need to keep learning and adapting with their human users over time. This ongoing adaptation is called **lifelong learning in decision making (LLDM)**, and its a key step toward building robots that become truly personalized helpers.
- 📄 [LIBERO paper](https://arxiv.org/abs/2306.03310)
- 💻 [Original LIBERO repo](https://github.com/Lifelong-Robot-Learning/LIBERO)
To make progress on this challenge, LIBERO provides a set of standardized tasks that focus on **knowledge transfer**: how well a robot can apply what it has already learned to new situations. By evaluating on LIBERO, different algorithms can be compared fairly and researchers can build on each others work.
LIBERO includes **five task suites**:
- **LIBERO-Spatial (`libero_spatial`)** tasks that require reasoning about spatial relations.
- **LIBERO-Object (`libero_object`)** tasks centered on manipulating different objects.
- **LIBERO-Goal (`libero_goal`)** goal-conditioned tasks where the robot must adapt to changing targets.
- **LIBERO-90 (`libero_90`)** 90 short-horizon tasks from the LIBERO-100 collection.
- **LIBERO-Long (`libero_10`)** 10 long-horizon tasks from the LIBERO-100 collection.
Together, these suites cover **130 tasks**, ranging from simple object manipulations to complex multi-step scenarios. LIBERO is meant to grow over time, and to serve as a shared benchmark where the community can test and improve lifelong learning algorithms.
![An overview of the LIBERO benchmark](https://libero-project.github.io/assets/img/libero/fig1.png)
## Evaluating with LIBERO
At **LeRobot**, we ported [LIBERO](https://github.com/Lifelong-Robot-Learning/LIBERO) into our framework and used it mainly to **evaluate [SmolVLA](https://huggingface.co/docs/lerobot/en/smolvla)**, our lightweight Vision-Language-Action model.
LIBERO is now part of our **multi-eval supported simulation**, meaning you can benchmark your policies either on a **single suite of tasks** or across **multiple suites at once** with just a flag.
To Install LIBERO, after following LeRobot official instructions, just do:
`pip install -e ".[libero]"`
### Single-suite evaluation
Evaluate a policy on one LIBERO suite:
```bash
lerobot-eval \
--policy.path="your-policy-id" \
--env.type=libero \
--env.task=libero_object \
--eval.batch_size=2 \
--eval.n_episodes=3
```
- `--env.task` picks the suite (`libero_object`, `libero_spatial`, etc.).
- `--eval.batch_size` controls how many environments run in parallel.
- `--eval.n_episodes` sets how many episodes to run in total.
---
### Multi-suite evaluation
Benchmark a policy across multiple suites at once:
```bash
lerobot-eval \
--policy.path="your-policy-id" \
--env.type=libero \
--env.task=libero_object,libero_spatial \
--eval.batch_size=1 \
--eval.n_episodes=2
```
- Pass a comma-separated list to `--env.task` for multi-suite evaluation.
### Policy inputs and outputs
When using LIBERO through LeRobot, policies interact with the environment via **observations** and **actions**:
- **Observations**
- `observation.state` proprioceptive features (agent state).
- `observation.images.image` main camera view (`agentview_image`).
- `observation.images.image2` wrist camera view (`robot0_eye_in_hand_image`).
⚠️ **Note:** LeRobot enforces the `.images.*` prefix for any multi-modal visual features. Always ensure that your policy config `input_features` use the same naming keys, and that your dataset metadata keys follow this convention during evaluation.
If your data contains different keys, you must rename the observations to match what the policy expects, since naming keys are encoded inside the normalization statistics layer.
This will be fixed with the upcoming Pipeline PR.
- **Actions**
- Continuous control values in a `Box(-1, 1, shape=(7,))` space.
We also provide a notebook for quick testing:
Training with LIBERO
## Training with LIBERO
When training on LIBERO tasks, make sure your dataset parquet and metadata keys follow the LeRobot convention.
The environment expects:
- `observation.state` → 8-dim agent state
- `observation.images.image` → main camera (`agentview_image`)
- `observation.images.image2` → wrist camera (`robot0_eye_in_hand_image`)
⚠️ Cleaning the dataset upfront is **cleaner and more efficient** than remapping keys inside the code.
To avoid potential mismatches and key errors, we provide a **preprocessed LIBERO dataset** that is fully compatible with the current LeRobot codebase and requires no additional manipulation:
👉 [HuggingFaceVLA/libero](https://huggingface.co/datasets/HuggingFaceVLA/libero)
For reference, here is the **original dataset** published by Physical Intelligence:
👉 [physical-intelligence/libero](https://huggingface.co/datasets/physical-intelligence/libero)
---
### Example training command
```bash
lerobot-train \
--policy.type=smolvla \
--policy.repo_id=${HF_USER}/libero-test \
--policy.load_vlm_weights=true \
--dataset.repo_id=HuggingFaceVLA/libero \
--env.type=libero \
--env.task=libero_10 \
--output_dir=./outputs/ \
--steps=100000 \
--batch_size=4 \
--eval.batch_size=1 \
--eval.n_episodes=1 \
--eval_freq=1000 \
```
---
### Note on rendering
LeRobot uses MuJoCo for simulation. You need to set the rendering backend before training or evaluation:
- `export MUJOCO_GL=egl` → for headless servers (e.g. HPC, cloud)
## Reproducing π₀.₅ results
We reproduce the results of π₀.₅ on the LIBERO benchmark using the LeRobot implementation. We take the Physical Intelligence LIBERO base model (`pi05_libero`) and finetune for an additional 6k steps in bfloat16, with batch size of 256 on 8 H100 GPUs using the [HuggingFace LIBERO dataset](https://huggingface.co/datasets/HuggingFaceVLA/libero).
The finetuned model can be found here:
- **π₀.₅ LIBERO**: [lerobot/pi05_libero_finetuned](https://huggingface.co/lerobot/pi05_libero_finetuned)
We then evaluate the finetuned model using the LeRobot LIBERO implementation, by running the following command:
```bash
python src/lerobot/scripts/eval.py \
--output_dir=/logs/ \
--env.type=libero \
--env.task=libero_spatial,libero_object,libero_goal,libero_10 \
--eval.batch_size=1 \
--eval.n_episodes=10 \
--policy.path=pi05_libero_finetuned \
--policy.n_action_steps=10 \
--output_dir=./eval_logs/ \
--env.max_parallel_tasks=1
```
**Note:** We set `n_action_steps=10`, similar to the original OpenPI implementation.
### Results
We obtain the following results on the LIBERO benchmark:
| Model | LIBERO Spatial | LIBERO Object | LIBERO Goal | LIBERO 10 | Average |
| -------- | -------------- | ------------- | ----------- | --------- | -------- |
| **π₀.₅** | 97.0 | 99.0 | 98.0 | 96.0 | **97.5** |
These results are consistent with the original [results](https://github.com/Physical-Intelligence/openpi/tree/main/examples/libero#results) reported by Physical Intelligence:
| Model | LIBERO Spatial | LIBERO Object | LIBERO Goal | LIBERO 10 | Average |
| -------- | -------------- | ------------- | ----------- | --------- | --------- |
| **π₀.₅** | 98.8 | 98.2 | 98.0 | 92.4 | **96.85** |