Files
lerobot/docs/source/backwardcomp.mdx
Steven Palma 378e1f0338 Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore

* chore: update pre-commit

* chore(deps): update pyproject

* fix(ci): multiple fixes

* chore: pre-commit apply

* chore: address review comments

* Update pyproject.toml

Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>

* chore(deps): add todo

---------

Signed-off-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com>
2025-07-17 14:30:20 +02:00

96 lines
3.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Backward compatibility
## Hardware API redesign
PR [#777](https://github.com/huggingface/lerobot/pull/777) improves the LeRobot calibration but is **not backward-compatible**. Below is a overview of what changed and how you can continue to work with datasets created before this pull request.
### What changed?
| | Before PR #777 | After PR #777 |
| --------------------------------- | ------------------------------------------------- | ------------------------------------------------------------ |
| **Joint range** | Degrees `-180...180°` | **Normalised range** Joints: `100...100` Gripper: `0...100` |
| **Zero position (SO100 / SO101)** | Arm fully extended horizontally | **In middle of the range for each joint** |
| **Boundary handling** | Software safeguards to detect ±180 ° wrap-arounds | No wrap-around logic needed due to mid-range zero |
---
### Impact on existing datasets
- Recorded trajectories created **before** PR #777 will replay incorrectly if loaded directly:
- Joint angles are offset and incorrectly normalized.
- Any models directly finetuned or trained on the old data will need their inputs and outputs converted.
### Using datasets made with the previous calibration system
We provide a migration example script for replaying an episode recorded with the previous calibration here: `examples/backward_compatibility/replay.py`.
Below we take you through the modifications that are done in the example script to make the previous calibration datasets work.
```diff
+ key = f"{name.removeprefix('main_')}.pos"
action[key] = action_array[i].item()
+ action["shoulder_lift.pos"] = -(action["shoulder_lift.pos"] - 90)
+ action["elbow_flex.pos"] -= 90
```
Let's break this down.
New codebase uses `.pos` suffix for the position observations and we have removed `main_` prefix:
<!-- prettier-ignore-start -->
```python
key = f"{name.removeprefix('main_')}.pos"
```
<!-- prettier-ignore-end -->
For `"shoulder_lift"` (id = 2), the 0 position is changed by -90 degrees and the direction is reversed compared to old calibration/code.
<!-- prettier-ignore-start -->
```python
action["shoulder_lift.pos"] = -(action["shoulder_lift.pos"] - 90)
```
<!-- prettier-ignore-end -->
For `"elbow_flex"` (id = 3), the 0 position is changed by -90 degrees compared to old calibration/code.
<!-- prettier-ignore-start -->
```python
action["elbow_flex.pos"] -= 90
```
<!-- prettier-ignore-end -->
To use degrees normalization we then set the `--robot.use_degrees` option to `true`.
```diff
python examples/backward_compatibility/replay.py \
--robot.type=so101_follower \
--robot.port=/dev/tty.usbmodem5A460814411 \
--robot.id=blue \
+ --robot.use_degrees=true \
--dataset.repo_id=my_dataset_id \
--dataset.episode=0
```
### Using policies trained with the previous calibration system
Policies output actions in the same format as the datasets (`torch.Tensors`). Therefore, the same transformations should be applied.
To find these transformations, we recommend to first try and and replay an episode of the dataset your policy was trained on using the section above.
Then, add these same transformations on your inference script (shown here in the `record.py` script):
```diff
action_values = predict_action(
observation_frame,
policy,
get_safe_torch_device(policy.config.device),
policy.config.use_amp,
task=single_task,
robot_type=robot.robot_type,
)
action = {key: action_values[i].item() for i, key in enumerate(robot.action_features)}
+ action["shoulder_lift.pos"] = -(action["shoulder_lift.pos"] - 90)
+ action["elbow_flex.pos"] -= 90
robot.send_action(action)
```
If you have questions or run into migration issues, feel free to ask them on [Discord](https://discord.gg/s3KuuzsPFb)