Files
lerobot/tests/policies/hilserl/test_modeling_classifier.py
Simon Alibert d4ee470b00 Package folder structure (#1417)
* Move files

* Replace imports & paths

* Update relative paths

* Update doc symlinks

* Update instructions paths

* Fix imports

* Update grpc files

* Update more instructions

* Downgrade grpc-tools

* Update manifest

* Update more paths

* Update config paths

* Update CI paths

* Update bandit exclusions

* Remove walkthrough section
2025-07-01 16:34:46 +02:00

140 lines
4.9 KiB
Python

# !/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.policies.sac.reward_model.configuration_classifier import RewardClassifierConfig
from lerobot.policies.sac.reward_model.modeling_classifier import ClassifierOutput
from tests.utils import require_package
def test_classifier_output():
output = ClassifierOutput(
logits=torch.tensor([1, 2, 3]),
probabilities=torch.tensor([0.1, 0.2, 0.3]),
hidden_states=None,
)
assert (
f"{output}"
== "ClassifierOutput(logits=tensor([1, 2, 3]), probabilities=tensor([0.1000, 0.2000, 0.3000]), hidden_states=None)"
)
@require_package("transformers")
def test_binary_classifier_with_default_params():
from lerobot.policies.sac.reward_model.modeling_classifier import Classifier
config = RewardClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(1,)),
}
config.normalization_mapping = {
"VISUAL": NormalizationMode.IDENTITY,
"REWARD": NormalizationMode.IDENTITY,
}
config.num_cameras = 1
classifier = Classifier(config)
batch_size = 10
input = {
"observation.image": torch.rand((batch_size, 3, 128, 128)),
"next.reward": torch.randint(low=0, high=2, size=(batch_size,)).float(),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 128, 128])
assert labels.shape == torch.Size([batch_size])
output = classifier.predict(images)
assert output is not None
assert output.logits.size() == torch.Size([batch_size])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 256])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@require_package("transformers")
def test_multiclass_classifier():
from lerobot.policies.sac.reward_model.modeling_classifier import Classifier
num_classes = 5
config = RewardClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(num_classes,)),
}
config.num_cameras = 1
config.num_classes = num_classes
classifier = Classifier(config)
batch_size = 10
input = {
"observation.image": torch.rand((batch_size, 3, 128, 128)),
"next.reward": torch.rand((batch_size, num_classes)),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 128, 128])
assert labels.shape == torch.Size([batch_size, num_classes])
output = classifier.predict(images)
assert output is not None
assert output.logits.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 256])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@require_package("transformers")
def test_default_device():
from lerobot.policies.sac.reward_model.modeling_classifier import Classifier
config = RewardClassifierConfig()
assert config.device == "cpu"
classifier = Classifier(config)
for p in classifier.parameters():
assert p.device == torch.device("cpu")
@require_package("transformers")
def test_explicit_device_setup():
from lerobot.policies.sac.reward_model.modeling_classifier import Classifier
config = RewardClassifierConfig(device="cpu")
assert config.device == "cpu"
classifier = Classifier(config)
for p in classifier.parameters():
assert p.device == torch.device("cpu")